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What’s going on under the hood of our favourite interpolator?



What is it, why do we care?
Kriging is one of the most influential interpolation methods in statistics, 
geosciences, engineering, and anything else that needs interpolation.


If you’ve asked SPSS or GIS to interpolate something before it’s 
probably using Kriging or something related.
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“Everything is related to everything else, but 
near things are more related than distant 
things” - Tobler’s First Law of Geography
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Building up interpolation

Tobler’s First Law



It is more desirable to 
predict from points 

closer rather than 

points further away



Sensible interpolation methods include…
Regression methods


Bi-linear interpolation


Inverse distance weighting


Nearest neighbour predictions


Spline interpolation


Kriging
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Denote by  the spatial locations and  the observed data that may 
be thought of as realisations from a latent stochastic process.

si Z(si)

Denote the covariance between any two points as 
.

cov(Z(s), Z(s′ )) ≡
C(s, s′ )

We are going to focus on predicting the stochastic process, , at a 
single location, .

Z(s0)
s0

We’re going to assume all data have point support.



Cranking out the math
We want the best linear unbiased predictor of . This is given by 
a weighted linear average of the observed data that minimises the 
mean-squared error





Z(s0)

𝔼 (Z(s0) −
n

∑
i=1

aiZ(si) − k)
2



Cranking out the math
Minimising this objective yields


 


where  and .


(we’re about to go through why…)

a = c′ C−1 k = E (Z(s0)) + c′ C−1E (Z)

c ≡ (C(s0, s1), …, C(s0, sn))′ Ci,j ≡ C(si, sj)



Cranking out the math
We may thus say that the optimal predictor of  is


 


with prediction error


Z(s0)

Z*(s0) = E (Z(s0)) + c′ C(Z − E (Z))

E ((Z(s0) − Z*(s0))2) = C(s0, s0) − c′ C−1c



Cranking out the math
First we need some basic identities:


 


 


  





 

E (x2) = var(x) + (E(x))2

var(x + y) = var(x) + 2cov(x, y) + var(y)

cov(ax, y) = acov(x, y)

var(ax) = a2var(x)

var(x + c) = var(x)
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Cranking out the math

 E ((Z(s0) − aTZ − k)2) = var (Z(s0) − aTZ) + (E (Z(s0) − aTZ − k))
2

and so  so that .k = E (Z(s0)) − aTE (Z) (E (Z(s0) − aTZ − k))
2

= 0

var (Z(s0) − aTZ) = var (Z(s0)) − 2cov (Z(s0), Z) a + aTvar (Z) a

Differentiating with respect to a:

 −2cov (Z(s0), Z) + 2aTvar (Z) = 0

and so aT = cov (Z(s0), Z) var (Z)−1
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The semivariogram and covariance function
Recall that this squared distance is very reminiscent of the definition of 
variance: . var[x] = E ((x − E[x])2)
A mathematical interpretation of Tobler’s Law is that points close to 
each other have a high covariance (and thus observing one point 
resolves much of the uncertainty in another).

The semivariogram is a way of describing the expected variance 
between two points as a function of distance

The covariance function describes how two points co-vary as a 
function of distance



The semivariogram

Distance

Sill
Partial Sill

Nugget
Range

γ (d(si, sj))



The covariance function

Partial Sill

Nugget
Range

Distance

Sill

C (d(si, sj))



Once we have a fit semivariogram or covariance function we’re good to go

Empirical Semivariogram



Empirical Semivariogram

 


for some choice of 


̂γ(h) =
1
nh ∑

si,sk∈N(h)
(Z (si) − Z (sk))

2

h = ∣ si − sk ∣
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Other methods of modelling covariance
Empirically fitting semivariograms is appropriate for pedagogy but is 
quite an ‘old’ way of solving the problem.

More often covariance functions are usually specified and fit (generally 
via likelihood methods) manually or automatically.

This is most likely what is happening in the background of an kriging 
software that you are using.

Be aware of what covariance function is being assumed - different 
functions yield drastically different interpolations.
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Time to Predict
1. We have the data 

2. We have a covariance function that models the data well

3. We’re all over the mathematical theory

4. Now we’re ready to predict!

 E (Z*(s0)) = E (Z(s0)) + c′ C(Z − E (Z))

var (Z*(s0)) = C(s0, s0) − c′ C−1c



Time to Predict

E (Z*(s)) var (Z*(s))
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The essence/ideas 
underpinning kriging are 

everywhere! If you’re ever 
interpolating or 

regressing, be mindful of 
where it may be.



What we haven’t talked about
Stationarity, types of covariance functions and positive definiteness


Methods of inference


Kriging with big data


Assumptions of Gaussinity 





