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Glacial melt effects on sea-level rise

 Sea-level rise as a result of climate change is [ == Thermal oxpansion
. . . . Glaciers
likely to be a major issue in the next century
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o Of the contributions to sea-level rise, that due
to glacial melt Is expected to be the second
largest

Global mean sea level rise (m)
< o
N N

=
o

2000 2020 2040 2060 2080 2100
Year

e Quantifying the uncertainty surrounding glacial
effects on sea-level rise is crucial for decision
making (governmental, private, personal, etc...)

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

& - -
o w O
L) l L] L] L] l Ll L] L}

Global mean sea level rise (m)
o o
h »

—
o

2000 2020 2040 2060 2080 2100
Year



To understand glacial dynamics we look to the past

Maximum extent of Ice Age Today’s continental
continental and sea ice and sea ice




Modelling glacier dynamics is hard...
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How do we provide accurate joint
reconstructions of sea-surface
temperature and sea-ice concentration as
boundary conditions?




Model Runs

Mean Model SST by maonth and model
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Mean Model SST by month and maodel
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Joint behaviour of SST and SIC
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Joint behaviour of SST and SIC

sst

We have this at every grid cell in the model



Reconstructing boundary conditions

When forcing a climate model with boundary conditions the
boundary conditions must

* be fully specified spatially and temporally,
* respect any physically related processes, and
e accurately represent the true process.



The coexchangeability model



The coexchangeability model

X; = M(X) + R;(X)

We assume exchangeability over the simulations,
.e., cov(X;, X)) = 2 Vi, ]



The coexchangeability model
X; = M(X) + R;(X)
Tx = M(X) + Ux

We assume coexchangeability between the simulations
and the true process, i.e., cov(X;, Ty) =1 Vi



The coexchangeability model
X =M(X) + Ri(X)
Tx = M(X)+ Ux
Z —HTx +W

We assume the data to be observed from the true latent
process subject to some measurement error.



The coexchangeability model
X; = M(X) + R;(X)
Tx = M(X) + Ux
Z —HTx +W

This is the ‘coexchangeability model’ of Rougier et. al. (2013)



Co-adjusting sea-ice

e \We do not have reliable measurements of SIC. Our best
sea-ice data are maximum extents.

 We have joint simulations of SST and SIC, (x;, y;), that we
can use to build a functional model of SIC given SST as an

input; i.e. modelling Y(X).

e From the model for X and the model for Y(X) we build a
model for Y.



Modelling SIC via exchangeable regressions

Y; = &x, 0 + €
Bi = M(B) + Ri(B)

We assume conditional exchangeabillity over the simulations, I.e.,
cov(Y,, Y] | X) = X Vi,j and exchangeability over the parameters



Modelling SIC via exchangeable regressions

Y; = &x, 0 + €
Bi = M(B) + Ri(B)
Ty = o7, M(B) + Uy

We assume coexchangeability of the simulation parameters with the
true process, i.e., cov(f, Ty | X) =1 Vi,



The statistical model

SST SIC
X; = M(X) + R;(X) Y, = &x.5; + ¢
Bi = M(B) + Ri(B)
Tx = M(X) + Ux Ty = &1, M(8) + Uy
/= HTx + W




The statistical model

SST
X; = M(X) 4+ R;(X)
TX\:,'-: M(X) + Ux
Z — HTX 4+ W
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Bayes linear analysis

Bayes linear statistics does not presuppose probability and so Is a
powerful methodology when higher order judgements are not well
founded.

To perform a Bayes linear analysis we

choose expectation as our primitive (probability may then be
defined from expectations of indicator functions),

construct a vector space between the random quantity and the
data,

endow this space with an inner product, and

perform inference via orthogonal projection in the inner product
space.
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Bayes Linear Adjustment of Beliefs

e Consider random quantity X € X and data D € 9 that form a linear
space £ = {', &} with inner product (A, B) = E[ATB]

« Our adjusted expectation solves the orthogonal projection of X onto the
affine space & = {1,9}, i.e.,, for E,[X] = hl + HD,
-5l X] = arg min ]H(X — E,[X])||* with solution

- plX

7 p[X] = E[X] + cov[X, D]var[D]" (D — E[D])

» The adjusted variance, varp| X |, is the outer product
-[(X — EplXDX — Ep[X])'], and is

varp|X]| = var[X] — cov[X, D]var[D] " cov|[D, X]
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Inference
X; = M(X) + R;(X) Y, =®x 6; + ¢
Bi = M(B) + Ri(B)
Tx = M(X) + Ux Ty = &, M(B) + Uy
/= HTx + W




Inference

1. BL update by X of T to calculate E¢[Ty] and varg[ Ty ]




Inference
X; = M(X)+Ri(X) Y,

1. BL update by X of Ty to calculate E¢[Ty] and varg[Ty]

2. BL update by Z of updated / to calculate

= X,Z[TX] and varX,Z[TX]




Inference

Tx = M(X) + Ux Ty = (I)TXM(ﬁ) + Uvy
/= HTx +W

1. BL update by X of Ty to calculate E¢[Ty] and varg[Ty]

2. BL update by Z of updated 1 to calculate £ ,{ 1| and varg ,{ 1|
3. BL update M(f) by (x;,y;) ... to calculate [y y[M(p)] and varx y)|M(p)]




Inference

Tx = M(X) + Ux Ty = &7, M(B8)+ Uy
/= HTx +W

BL update by X of Ty to calculate E5[Ty] and varg[Ty]

BL update by Z of updated 7y to calculate 5 | Iy | and varg | x|
BL update M(p) by (x;,y;) ... to calculate [y [M(p)] and varx y)[M())]

s~ W b =

History match samples of 1y and 1y to observed functions of /'y to obtain joint
plausibility samples



Adjusted beliefs of 7,
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Adjusted bel
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Adjusted beliefs of 7,

Adjusted
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Adjusted beliefs of 7,
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Adjusted beliefs of 7,
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Some adjusted beliefs of M(/)

0.50 0.75 1.00

~(X,Y) [M(p,)] ~(X,Y) (M (,53)]

19



History Matching SIC

Generate
Iy ~ [E X,Z[TX] + (VarX,Z[Tx])1/2€
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History Matching SIC

GGenerate GGenerate

~e)

TX ~ _X,Z[TX] + (VarX,Z[Tx])1/2€ p~ _(X,Y)[M(,B)] + (Var(X,Y)[,B])l/ze
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History Matching SIC

GGenerate GGenerate

3 3 Sienerate
Iy ~ _X,Z[TX] + (VarX,Z[Tx])1/2€ p~ _(X,Y)[M(,B)] + (Var(X,Y)[,B])Uze Iy ~ (I)TX,B + (var[R(TY)])1/2€
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History Matching SIC

Generate
Iy ~ [E X,Z[TX] + (VarX,Z[Tx])1/2€
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GGenerate

GGenerate

= x.nlM(p)] + (Var(X,Y)[,B])Uze Ty ~ CDTX,E + (var[R(Ty)]) e

Sea Surface Temperature - August
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Check for membership in NROY space
with sea-ice extent data



Joint reconstructions of SST and SIC
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Thank you

L.Astfalck@leeds.
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Updating M(f)

As we have specified conditional (on X;) exchangeability for the Y,

we may not immediately utilise Bayes linear sufficiency arguments
for exchangeable data.

We may make sequential partial updates to our beliefs of M(/f),

but we may also calculate this jointly:
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Updating M(f)

As we have specified conditional (on X;) exchangeability for the Y,

we may not immediately utilise Bayes linear sufficiency arguments
for exchangeable data.

We may make sequential partial updates to our beliefs of M(/f),

but we may also calculate this jointly:
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Updating M()

Noting that 0 = M(f) — f. + R.(f) with some manipulation (as in
Hodges (1998)) we may restate this to
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