

Inferring nonlinear internal wave currents from sparse observations

Nicole Jones

The University of Western Australia

Presented to the 2022 FOO/ACOMO Combined Workshop

Lachlan Astfalck, Andrew Zulberti, Matt Rayson, Edward Cripps, and

What are nonlinear internal waves...?

Nonlinear internal waves (NLIWs) are generated from the steepening of the internal tides into large aperiodic internal waves.

What are nonlinear internal waves...?

Nonlinear internal waves (NLIWs) are generated from the steepening of the internal tides into large aperiodic internal waves.

...and why do we care?

many structures on the continental shelf.

NLIWs generate extreme currents which dictate design criteria for

How, historically, are internal waves modelled?

- Numerical modelling (3D non-hydrostatic Reynolds-averaged ocean models)
 - Too computationally expensive
- Regression (cnoidal wave functions)
 - Functions too restrictive
- Machine learning (neural networks)
 - No physical interpretability

 A Gaussian process is an infinite dimensional prior distribution over functions

- A Gaussian process is an infinite dimensional prior distribution over functions
- A Gaussian process is a big multivariate normal distribution

- A Gaussian process is an infinite dimensional prior distribution over functions
- A Gaussian process is a big multivariate normal distribution
- Spatio-temporal structure is captured by the mean and covariance functions

- A Gaussian process is an infinite dimensional prior distribution over functions
- A Gaussian process is a big multivariate normal distribution
- Spatio-temporal structure is captured by the mean and covariance functions
- We parameterise NLIW (and potentially other) structure into these functions

- A Gaussian process is an infinite dimensional prior distribution over functions
- A Gaussian process is a big multivariate normal distribution
- Spatio-temporal structure is captured by the mean and covariance functions
- We parameterise NLIW (and potentially other) structure into these functions
- Similar to Kriging and Optimal Interpolation, BUT, offers a robust way to infer parameters

A covariance function, $k(\cdot, \cdot)$, describes the covariance between two locations.

A Matérn covariance function with different parameterisations:

For multivariate (space and time) inputs $\mathbf{x} = (x, y, t)$ and $\mathbf{x}' = (x', y', t')$

Stationarity (covariance a function of distance in input space): $k(\mathbf{x}, \mathbf{x}') = k(|\mathbf{x} - \mathbf{x}'|, 0) = k(\tau)$, where $\tau = |\mathbf{x} - \mathbf{x}'|$

For multivariate (space and time) inputs $\mathbf{x} = (x, y, t)$ and $\mathbf{x}' = (x', y', t')$

- Stationarity (covariance a function of distance in input space): $k(\mathbf{x}, \mathbf{x}') = k(|\mathbf{x} - \mathbf{x}'|, 0) = k(\tau)$, where $\tau = |\mathbf{x} - \mathbf{x}'|$

For multivariate (space and time) inputs $\mathbf{x} = (x, y, t)$ and $\mathbf{x}' = (x', y', t')$

Separability (can specify covariance in each dimension independently): $k(\mathbf{x}, \mathbf{x}') = \sigma^2 k_x(x, x') k_v(y, y') k_t(t, t')$

- Stationarity (covariance a function of distance in input space): $k(\mathbf{x}, \mathbf{x}') = k(|\mathbf{x} - \mathbf{x}'|, 0) = k(\tau)$, where $\tau = |\mathbf{x} - \mathbf{x}'|$
- Anisotropy (covariance in each dimension is different):
 - $k_i(\cdot, \cdot) \neq k(\cdot, \cdot), \text{ for } i \in \{x, y, t\}$

For multivariate (space and time) inputs $\mathbf{x} = (x, y, t)$ and $\mathbf{x}' = (x', y', t')$

Separability (can specify covariance in each dimension independently): $k(\mathbf{x}, \mathbf{x}') = \sigma^2 k_x(x, x') k_v(y, y') k_t(t, t')$

Latitude/Longitude Projection

Across-crest/Time Projection

c [m/s]

Latitude/Longitude Projection

Across-crest/Time Projection

c [m/s]

 $k_{\text{NLIW}}(\tau;\theta) = \sigma^2 k_{x''}(\tau_{x''};\theta) k_{y''}(\tau_{y''};\theta) k_{t''}(\tau_{t''};\theta)$

(stationary frame)

Across-crest-

 $k_{\text{NLIW}}(\tau;\theta) = \sigma^2 k_{x''}(\tau_{x''};\theta) k_{y''}(\tau_{y''};\theta) k_{t''}(\tau_{t''};\theta)$

(stationary frame)

Embedding NLIW dynamics into the covariance Across-crest $k_{\text{NLIW}}(\tau;\theta) = \sigma^2 k_{x''}(\tau_{x''};\theta) k_{y''}(\tau_{y''};\theta) k_{t''}(\tau_{t''};\theta)$ Along-crest c [m/s] t' (time) (stationary frame) x (lon $\beta = \tan^{-1}(1/c)$ θ x" (across-crest) x' (across-crest) c [m/s]

Embedding NLIW dynamics into the covariance Across-crest Decay Term $k_{\text{NLIW}}(\tau;\theta) = \sigma^2 k_{x''}(\tau_{x''};\theta) k_{y''}(\tau_{y''};\theta) k_{t''}(\tau_{t''};\theta)$ Along-crest c [m/s] t' (time) (stationary frame) x (lon $\beta = \tan^{-1}(1/c)$ θ x" (across-crest) x' (across-crest) c [m/s]

time [s]

time [s]

Where to from here

- Characterise field profiles of NLIWs
- Automated detection of NLIW events from the background process Optimise code to run in real time for operations
- Include parameters to model NLIW curvature (only detectable by larger) arrays)
- Test on other arrays and for longer periods of time (will require some) computational tricks)
- Extend to moorings that observe currents through depth

Take a photo of this slide

- gptide code available at github.com/TIDE-ITRH/gptide
- gptide tutorials available at gptide.readthedocs.io
- Email methodological queries to lachlan.astfalck@uwa.edu.au
- Email software queries to andrew.zulberti@uwa.edu.au
- Visit tide.edu.au for more information about the ARC Research Hub for Transforming energy Infrastructure through Digital Engineering (TIDE)

