Presented to the 2022 FOO/ACOMO Combined Workshop

Inferring nonlinear internal wave currents from sparse observations

Lachlan Astfalck, Andrew Zulberti, Matt Rayson, Edward Cripps, and

Nicole Jones

The University of Western Australia

What are nonlinear internal waves…?

Nonlinear internal waves (NLIWs) are generated from the steepening of the internal tides into large aperiodic internal waves.

What are nonlinear internal waves…?

Nonlinear internal waves (NLIWs) are generated from the steepening of the internal tides into large aperiodic internal waves.

…and why do we care?

NLIWs generate extreme currents which dictate design criteria for

many structures on the continental shelf.

How, historically, are internal waves modelled?

- Numerical modelling (3D non-hydrostatic Reynolds-averaged ocean models)
	- Too computationally expensive
- Regression (cnoidal wave functions)
	- Functions too restrictive
- Machine learning (neural networks)
	- No physical interpretability

• A Gaussian process is an infinite dimensional prior distribution over functions

- A Gaussian process is an infinite dimensional prior distribution over functions
- A Gaussian process is a big multivariate normal distribution

- A Gaussian process is an infinite dimensional prior distribution over functions
- A Gaussian process is a big multivariate normal distribution
- Spatio-temporal structure is captured by the mean and covariance functions

- A Gaussian process is an infinite dimensional prior distribution over functions
- A Gaussian process is a big multivariate normal distribution
- Spatio-temporal structure is captured by the mean and covariance functions
- We parameterise NLIW (and potentially other) structure into these functions

- A Gaussian process is an infinite dimensional prior distribution over functions
- A Gaussian process is a big multivariate normal distribution
- Spatio-temporal structure is captured by the mean and covariance functions
- We parameterise NLIW (and potentially other) structure into these functions
- Similar to Kriging and Optimal Interpolation, BUT, offers a robust way to infer parameters

A covariance function, $k(\;\cdot\;,\;\cdot\;)$, describes the covariance between two locations.

A Matérn covariance function with different parameterisations:

Embedding structure into the covariance

For multivariate (space and time) inputs $\mathbf{x} = (x, y, t)$ and $\mathbf{x}' = (x', y', t')$

Stationarity (covariance a function of distance in input space): $k(\mathbf{x}, \mathbf{x}') = k(|\mathbf{x} - \mathbf{x}'|,0) = k(\tau)$, where $\tau = |\mathbf{x} - \mathbf{x}'|$

For multivariate (space and time) inputs $\mathbf{x} = (x, y, t)$ and $\mathbf{x}' = (x', y', t')$

-
- Stationarity (covariance a function of distance in input space): $k(\mathbf{x}, \mathbf{x}') = k(|\mathbf{x} - \mathbf{x}'|, 0) = k(\tau)$, where $\tau = |\mathbf{x} - \mathbf{x}'|$
-

For multivariate (space and time) inputs $\mathbf{x} = (x, y, t)$ and $\mathbf{x}' = (x', y', t')$

Separability (can specify covariance in each dimension independently): $k(\mathbf{x}, \mathbf{x}') = \sigma^2 k_x(x, x') k_y(y, y') k_t$ (*t*, *t*′)

-
- Stationarity (covariance a function of distance in input space): $k(\mathbf{x}, \mathbf{x}') = k(|\mathbf{x} - \mathbf{x}'|, 0) = k(\tau)$, where $\tau = |\mathbf{x} - \mathbf{x}'|$
-
- Anisotropy (covariance in each dimension is different):
	- $k_i(\cdot, \cdot) \neq k(\cdot, \cdot)$, for $i \in \{x, y, t\}$

For multivariate (space and time) inputs $\mathbf{x} = (x, y, t)$ and $\mathbf{x}' = (x', y', t')$

Separability (can specify covariance in each dimension independently): $k(\mathbf{x}, \mathbf{x}') = \sigma^2 k_x(x, x') k_y(y, y') k_t$ (*t*, *t*′)

Latitude/Longitude Projection Across-crest/Time Projection

c [m/s]

Latitude/Longitude Projection Across-crest/Time Projection

c [m/s]

 $k_{\text{NLIW}}(\tau;\theta) = \sigma^2 \ k_{\text{x''}}(\tau_{\text{x''}};\theta) \ k_{\text{y''}}(\tau_{\text{y''}};\theta) \ k_{\text{t''}}(\tau_{\text{t''}};\theta)$

(stationary frame)

x' (across-crest)

 $k_{\text{NLIW}}(\tau;\theta) = \sigma^2 \ k_{\text{x''}}(\tau_{\text{x''}}^{\prime};\theta) \ k_{\text{y''}}(\tau_{\text{y''}};\theta) \ k_{\text{t''}}(\tau_{\text{t''}};\theta)$

(stationary frame)

x' (across-crest)

Across-crest

Embedding *NLIW dynamics* **into the covariance** Across-crest $k_{\text{NLIW}}(\tau;\theta) = \sigma^2 \ k_{\text{x''}}(\tau_{\text{x''}}^{\prime};\theta) \ k_{\text{y''}}(\tau_{\text{y''}};\theta) \ k_{\text{t''}}(\tau_{\text{t''}};\theta)$ Along-crestc $[m/s]$ $y' = \frac{1}{2} \int_{\gamma_0}^{\gamma_0} \gamma_0 \gamma_0 \gamma_0$ y (lat) t' (time) (stationary frame) [m] [s] x' (across-crest) x (lon) $\beta = \tan^{-1}(1/c)$ *θ* x'' (across-crest) x' (across-crest) c [m/s]

Embedding *NLIW dynamics* **into the covariance** Across-crest Decay Term $k_{\text{NLIW}}(\tau;\theta) = \sigma^2 \ k_{\text{x''}}(\tau_{\text{x''}}^{\prime};\theta) \ k_{\text{y''}}(\tau_{\text{y''}};\theta) \ k_{\text{t''}}(\tau_{\text{t''}};\theta)$ Along-crest c $[m/s]$ $y' = \frac{1}{2} \int_{\gamma_0}^{\gamma_0} \gamma_0 \gamma_0 \gamma_0$ t' (time) y (lat) (stationary frame) [m] [s] x' (across-crest) x (lon) $\beta = \tan^{-1}(1/c)$ *θ* x'' (across-crest) x' (across-crest) c [m/s]

3000

1000

0

2000

4000

time [s]

5000

6000

7000

3000

1000

0

2000

4000

time [s]

5000

6000

7000

Where to from here

- Characterise field profiles of NLIWs
-
- Automated detection of NLIW events from the background process • Optimise code to run in real time for operations
- Include parameters to model NLIW curvature (only detectable by larger arrays)
- Test on other arrays and for longer periods of time (will require some computational tricks)
- Extend to moorings that observe currents through depth

Take a photo of this slide

- *gptide* code available at **github.com/TIDE-ITRH/gptide**
- *gptide* tutorials available at **gptide.readthedocs.io**
- Email methodological queries to **lachlan.astfalck@uwa.edu.au**
- Email software queries to **andrew.zulberti@uwa.edu.au**
- Visit **tide.edu.au** for more information about the ARC Research Hub for Transforming energy Infrastructure through Digital Engineering (TIDE)

