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…and why do we care?

NLIWs generate extreme currents which dictate design criteria for 
many structures on the continental shelf.




How, historically, are internal waves modelled?

• Numerical modelling (3D non-hydrostatic 
Reynolds-averaged ocean models)


• Too computationally expensive


• Regression (cnoidal wave functions)


• Functions too restrictive


• Machine learning (neural networks)


• No physical interpretability
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Synthesising physics and statistical learning
• A Gaussian process is an infinite dimensional prior distribution over 

functions

• A Gaussian process is a big multivariate normal distribution

• Spatio-temporal structure is captured by the mean and covariance 
functions

• We parameterise NLIW (and potentially other) structure into these functions

• Similar to Kriging and Optimal Interpolation, BUT, offers a robust way to 
infer parameters



A covariance function, , describes the covariance between 
two locations.

A Matérn covariance function with different parameterisations:

k( ⋅ , ⋅ )

Embedding structure into the covariance

Rasmussen and Williams (2006)
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Stationarity (covariance a function of distance in input space):
, where  k(x, x′￼) = k( |x − x′￼| ,0) = k(τ) τ = |x − x′￼|

Separability (can specify covariance in each dimension independently):
 k(x, x′￼) = σ2 kx(x, x′￼) ky(y, y′￼) kt(t, t′￼)

Anisotropy (covariance in each dimension is different):
, for ki( ⋅ , ⋅ ) ≠ k( ⋅ , ⋅ ) i ∈ {x, y, t}
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Where to from here
• Characterise field profiles of NLIWs


• Automated detection of NLIW events from the background process


• Optimise code to run in real time for operations


• Include parameters to model NLIW curvature (only detectable by larger 
arrays)


• Test on other arrays and for longer periods of time (will require some 
computational tricks)


• Extend to moorings that observe currents through depth



Take a photo of this slide

• gptide code available at github.com/TIDE-ITRH/gptide


• gptide tutorials available at gptide.readthedocs.io


• Email methodological queries to lachlan.astfalck@uwa.edu.au


• Email software queries to andrew.zulberti@uwa.edu.au


• Visit tide.edu.au for more information about the ARC Research Hub for 
Transforming energy Infrastructure through Digital Engineering (TIDE)

https://github.com/TIDE-ITRH/gptide
mailto:lachlan.astfalck@uwa.edu.au
https://tide.edu.au

