

Debiasing Welch's Method of Spectral Density Estimation

Lachlan Astfalck

School of Physics, Mathematics and Computing & Oceans Graduate School The University of Western Australia

With contributions from Adam Sykulski, Ed Cripps Paul Branson

With contributions from Adam Sykulski, Ed Cripps, Andrew Zulberti, Aurelien Ponte, Michael Cutler and

TIDE a.k.a. ARC ITRH for Transforming energy Infrastructure through Digital Engineering

Physical Oceanography

Hydrodynamics of Sea-surface Structures

Sea-bed Geotechnics

TIDE a.k.a. ARC ITRH for Transforming energy Infrastructure through Digital Engineering

Hydrodynamics of Sea-surface Structures

Coastal Wave Measurements

Ocean Beach sea-surface heights

Complex-valued data

Model simulation of Lagrangian drifters

Multivariate data

3D Shallow Island Wakes

Multidimensional data

Sentinel-2 Sea Surface Imaging

Coastal Wave Measurements

Ocean Beach sea-surface heights

Coastal Wave Measurements

Pressure is attenuated as

$$K_p(k,z)^2 = \left(\frac{\cosh(kh+kz)}{\cosh(kh)}\right)^2$$

..., $x_{t-2}, x_{t-1}, x_t, x_{t+1}, x_{t+2}, \dots$

..., $X_{t-2}, X_{t-1}, X_t, X_{t+1}, X_{t+2}, ...$

• Assume we observe a real-value observed at the interval Δ .

• Assume we observe a real-valued stochastic process $\{X_t\}$ for $t \in \mathbb{Z}$,

•••,
$$x_{t-2}, x_{t-1},$$

- observed at the interval Δ .
- Assume $E[X_t] = constant$ and Gaussian $\{X_t\}$

 $x_t, x_{t+1}, x_{t+2}, \cdots$

• Assume we observe a real-valued stochastic process $\{X_t\}$ for $t \in \mathbb{Z}$,

•••,
$$x_{t-2}, x_{t-1},$$

- Assume we observe a real-valued stochastic process $\{X_t\}$ for $t \in \mathbb{Z}$, observed at the interval Δ .
- Assume $E[X_t] = \text{constant}$ and Gaussian $\{X_t\}$
- If $\{X_t\}$ is second-order stationary we define the auto-covariance function $\gamma(\tau) = \mathbb{E}[X_t X_{t+\tau}]$

 $X_t, X_{t+1}, X_{t+2}, \dots$

• We can specify a parametric form for $\gamma(\tau)$ and fit via maximum likelihood.

- We can specify a parametric form for $\gamma(\tau)$ and fit via maximum likelihood.
- everything else a GP does.

• Once we've fit a $\gamma(\tau)$ we can interpolate data, make predictions, and

- We can specify a parametric form for $\gamma(\tau)$ and fit via maximum likelihood.
- everything else a GP does.
- $\gamma(\tau)$ must be positive semi-definite.

• Once we've fit a $\gamma(\tau)$ we can interpolate data, make predictions, and

Bochner's Theorem (aka Wiener-Khinchin's Theorem)

If $\gamma(\tau)$ is absolutely summable then th that forms a Fourier pair with $\gamma(\tau)$

$$\gamma(\tau) = \int_{-1/2}^{1/2} f(\omega) e^{i\omega\tau} \,\mathrm{d}\alpha$$

If $\gamma(\tau)$ is absolutely summable then there exists a power spectral density $f(\omega)$

 $\omega, \qquad f(\omega) = \sum_{i=1}^{\infty} \gamma(\tau) e^{-i\omega\tau}$ $\tau = \infty$

The ACF vs the PSD

What's a good empirical estimate of $f(\omega) = \mathscr{F}{\gamma(\tau)}$?

What's a good empirical estimate of $f(\omega) = \mathscr{F}{\gamma(\tau)}$?

$$I_n(\omega) = \frac{1}{n} \left| \begin{array}{c} n^{n-1} \\ \sum_{t=0}^{n-1} x_t e^{-t} \\ t = 0 \end{array} \right|_{t=0}^{n-1} \left| \begin{array}{c} x_t e^{-t} \\ x_t e^{-t} \\ t = 0 \end{array} \right|_{t=0}^{n-1} \left| \begin{array}{c} x_t e^{-t} \\ x_t e^{-t} \\ t = 0 \end{array} \right|_{t=0}^{n-1} \left| \begin{array}{c} x_t e^{-t} \\ x_t e^{-t} \\ t = 0 \end{array} \right|_{t=0}^{n-1} \left| \begin{array}{c} x_t e^{-t} \\ x_t e^{-t} \\ t = 0 \end{array} \right|_{t=0}^{n-1} \left| \begin{array}{c} x_t e^{-t} \\ x_t e^{-t} \\ t = 0 \end{array} \right|_{t=0}^{n-1} \left| \begin{array}{c} x_t e^{-t} \\ x_$$

This defines the *periodogram*. This g estimate to $f(\omega)$.

- $f(\omega) = \mathscr{F}\{\gamma(\tau)\}?$ $-i\omega\tau \bigg|_{\tau=-(n-1)}^{2} = \sum_{\tau=-(n-1)}^{n-1} \hat{\gamma}_{b}(\tau)e^{-i\omega\tau}$
- This defines the *periodogram*. This gives a strictly positive, although biased,

What's a good empirical estimate of $f(\omega) = \mathscr{F}{\gamma(\tau)}$?

$$I_n(\omega) = \frac{1}{n} \left| \begin{array}{c} n^{n-1} \\ \sum_{t=0}^{n-1} x_t e^{-t} \\ t = 0 \end{array} \right|_{t=0}^{n-1} \left| \begin{array}{c} x_t e^{-t} \\ x_t e^{-t} \\ t = 0 \end{array} \right|_{t=0}^{n-1} \left| \begin{array}{c} x_t e^{-t} \\ x_t e^{-t} \\ t = 0 \end{array} \right|_{t=0}^{n-1} \left| \begin{array}{c} x_t e^{-t} \\ x_t e^{-t} \\ t = 0 \end{array} \right|_{t=0}^{n-1} \left| \begin{array}{c} x_t e^{-t} \\ x_t e^{-t} \\ t = 0 \end{array} \right|_{t=0}^{n-1} \left| \begin{array}{c} x_t e^{-t} \\ x_t e^{-t} \\ t = 0 \end{array} \right|_{t=0}^{n-1} \left| \begin{array}{c} x_t e^{-t} \\ x_$$

This defines the *periodogram*. This g estimate to $f(\omega)$.

$$\hat{\gamma}_b(\tau) = \frac{1}{n} \sum_{\substack{t=0}}^{n-|\tau|-1} x_t x_{t+|\tau|}$$

- $\left| f(\omega) = \mathscr{F}\{\gamma(\tau)\}? \right|^{2} = \sum_{\tau=-(n-1)}^{n-1} \hat{\gamma}_{b}(\tau) e^{-i\omega\tau}$
- This defines the *periodogram*. This gives a strictly positive, although biased,

$$E[\hat{\gamma}_b(\tau)] = \left(1 - \frac{|\tau|}{n}\right)\gamma(\tau)$$

The periodogram is noisy and inconsistent

 $I_n(\omega) \sim \mathrm{E}[I_n(\omega)] \,\mathcal{X}_2^2$

(approximately)

The periodogram is noisy and inconsistent

 $I_n(\omega) \sim \mathrm{E}[I_n(\omega)] \,\mathcal{X}_2^2$

 $\log I_n(\omega) \sim \log \mathrm{E}[I_n(\omega)] + \log \mathcal{X}_2^2$

(approximately)

Log Periodograms of Wave Measurements

Log Periodograms of Wave Measurements

Welch's Estimate

 $\bar{I}_L(\omega;h) = \frac{1}{m} \sum_{i=0}^{j-1} I_L^j(\omega;h)$

Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on audio and electroacoustics, 15(2), 70-73.

Welch's estimator partitions a time-series into *m* overlapping blocks of length *L*, calculates the taper periodograms of each block, $I_I^J(\omega; h)$, and is defined as

The periodogram is blurred

Seeing as the periodogram is defined from a biased estimate of the ACF, we may also suspect that $I_n(\omega)$ is also biased.

Fejer's kernel

Define Fejer's kernel

$$\mathcal{F}_{n}(\omega) = \frac{1}{n} \left(\frac{1 - \cos(n\omega)}{1 - \cos(\omega)} \right)$$
$$= \sum_{\tau=1-n}^{n-1} \left(1 - \frac{|\tau|}{n} \right) e^{-\tau}$$

The blurred PSD is $\tilde{f}(\omega) = f(\omega) * \mathcal{F}_n(\omega)$

Fejer's kernel

Define Fejer's kernel

$$\mathcal{F}_{n}(\omega) = \frac{1}{n} \left(\frac{1 - \cos(n\omega)}{1 - \cos(\omega)} \right)$$
$$= \sum_{\tau=1-n}^{n-1} \left(1 - \frac{|\tau|}{n} \right) e^{-\tau}$$

The blurred PSD is $\tilde{f}(\omega) = f(\omega) * \mathcal{F}_n(\omega)$

Bias decreases as *n* increases

What's wrong with Welch's estimate?

- Welch's estimate enforces consistency by partitioning and averaging
- As the *m* blocks increase the variance of our estimator decreases
- Also, as m increases, block length L decreases (and hence bias increases)

What's wrong with Welch's estimate?

- Welch's estimate enforces consistency by partitioning and averaging
- As the *m* blocks increase the variance of our estimator decreases
- Also, as m increases, block length L decreases (and hence bias increases)

We become increasingly more confident in an estimate that is increasingly more wrong

How do we manage spectral bias? **Parametric Estimation**

likelihood calculated in $\mathcal{O}(n \log n)$

For a nice proof of this, see Kirch, C., et al. (2019). Beyond Whittle: Nonparametric correction of a parametric likelihood with a focus on Bayesian time series analysis.

To avoid expensive matrix inversions we can fit some $f(\omega; \theta)$ with the Whittle

$l_{W}(\theta) = -\sum_{\omega \in \Omega_{n}} \left\{ \log f(\omega; \theta) + \frac{I_{n}(\omega)}{f(\omega; \theta)} \right\}$

Correct the bias in the data?

$$l_{W}(\theta) = -\sum_{\omega \in \Omega_{n}} \left\{ \log f(\omega; \theta) + \frac{(I_{n}(\omega))}{f(\omega; \theta)} \right\}$$

Ways we could remove bias from the periodogram:

Correct the bias in the data?

$$l_W(\theta) = -\sum_{\omega \in \Omega_n} \left\{ e^{-\frac{1}{2}} \right\}$$

Ways we could remove bias from the periodogram:

• Tapering. But at the cost of introducing a different type of bias.

Correct the bias in the data? $\log f(\omega;\theta) + \frac{(I_n(\omega))}{f(\omega;\theta)} \bigg\}$

Ways we could remove bias from the periodogram:

- Tapering. But at the cost of introducing a different type of bias.
- Pre-whitening. Doesn't always work, hard to tune.

$\log f(\omega; \theta) + \frac{(I_n(\omega))}{f(\omega; \theta)} \}$

the data?

$$l_W(\theta) = -\sum_{\omega \in \Omega_n} \left\{ \omega \in \Omega_n \right\}$$

Ways we could remove bias from the periodogram:

- Tapering. But at the cost of introducing a different type of bias.
- Pre-whitening. Doesn't always work, hard to tune.
- Collect more data at a higher sampling rate. Not really possible.

$\log f(\omega; \theta) + \frac{(I_n(\omega))}{f(\omega; \theta)}$

Correct the bias in the data?

Biased parametric estimation ...or bias the spectral density

Biased parametric estimation ...or bias the spectral density

Call $\tilde{f}_n(\omega; \theta)$ the biased spectral density. We need it to incorporate the effects of blurring and aliasing.

Biased parametric estimation ...or bias the spectral density

Call $\tilde{f}_n(\omega; \theta)$ the biased spectral density. We need it to incorporate the effects of blurring and aliasing.

Blurred spectrum: $f_b(\omega)$

 $f_{h}(\omega;\theta) = f(\omega;\theta) * \mathcal{F}_{n}(\omega)$

Biased parametric estimation ... or bias the spectral density

Call $f_n(\omega; \theta)$ the biased spectral density. We need it to incorporate the effects of blurring and aliasing.

Blurred spectrum:

Aliased spectrum:

 $f_{b}(\omega;\theta) = f(\omega;\theta) * \mathcal{F}_{n}(\omega)$ $k = \infty$ $f_a(\omega;\theta) = \sum f(\omega+k)$ $k = -\infty$

Sykulski, A. M., Olhede, S. C., Guillaumin, A. P., Lilly, J. M., & Early, J. J. (2019). The debiased Whittle likelihood. *Biometrika*, 106(2), 251-266.

 $l_{W}(\theta) = -\sum_{\omega \in \Omega_{n}} \left\{ \log \tilde{f}_{n}(\omega; \theta) + \frac{I_{n}(\omega)}{\tilde{f}_{n}(\omega; \theta)} \right\}$

Where we calculate $\tilde{f}_n(\omega; \theta)$ by

Sykulski, A. M., Olhede, S. C., Guillaumin, A. P., Lilly, J. M., & Early, J. J. (2019). The debiased Whittle likelihood. *Biometrika*, 106(2), 251-266.

 $l_{W}(\theta) = -\sum_{\omega \in \Omega_{n}} \left\{ \log \tilde{f}_{n}(\omega; \theta) + \frac{I_{n}(\omega)}{\tilde{f}_{n}(\omega; \theta)} \right\}$

$$l_W(\theta) = -\sum_{\omega \in \Omega_n} \left\{ le_{\omega} \right\}$$

Where we calculate $\tilde{f}_n(\omega; \theta)$ by

$$\tilde{f}_n(\omega;\theta) = 2 \times \operatorname{Re} \left\{ \sum_{\tau=0}^{n-1} \left(\sum_{\tau=0}^{n-$$

Sykulski, A. M., Olhede, S. C., Guillaumin, A. P., Lilly, J. M., & Early, J. J. (2019). The debiased Whittle likelihood. *Biometrika*, *106*(2), 251-266.

 $\left\{ \log \tilde{f}_n(\omega;\theta) + \frac{I_n(\omega)}{\tilde{f}_n(\omega;\theta)} \right\}$

 $\left(1-\frac{\tau}{n}\right)\gamma(\tau;\theta)e^{-i\omega\tau}\left\{-\gamma(0;\theta)\right\}$

$$l_W(\theta) = -\sum_{\omega \in \Omega_n} \begin{cases} 1 \\ 0 \end{cases}$$

Where we calculate $f_n(\omega; \theta)$ by

$$\tilde{f}_n(\omega;\theta) = 2 \times \operatorname{Re} \left\{ \begin{array}{l} n-1 \\ \sum_{\tau=0}^{n-1} \end{array} \right\}$$

We can show that $E[I_n(\omega)] = \tilde{f}_n(\omega; \theta)$

Sykulski, A. M., Olhede, S. C., Guillaumin, A. P., Lilly, J. M., & Early, J. J. (2019). The debiased Whittle likelihood. *Biometrika*, 106(2), 251-266.

 $\left\{ \log \tilde{f}_n(\omega;\theta) + \frac{I_n(\omega)}{\tilde{f}_n(\omega;\theta)} \right\}$

 $\left(1-\frac{\tau}{n}\right)\gamma(\tau;\theta)e^{-i\omega\tau}\left\{-\gamma(0;\theta)\right\}$

Assuming a model for the waves

 We can think about a periodogram as a Riemann approximation to the true biased PSD

- We can think about a periodogram as a Riemann approximation to the true biased PSD
- As we increase the resolution of the bases we converge on the true integral

- We can think about a periodogram as a Riemann approximation to the true biased PSD
- As we increase the resolution of the bases we converge on the true integral
- As we increase *m* we converge on the true biased PSD

We model our spectral density with the rectanglular basis

$$f(\omega) = \sum_{i} a_{i}B_{i}(\omega)$$

and solve similar to the parametric case.

(De)biased semi-parametric inference

Tobar, F. (2019). Band-limited Gaussian processes: The sinc kernel. Advances in Neural Information Processing Systems, 32.

(De)biased semi-parametric inference

The corresponding ACF to each basis is given by

$$\rho_i(\tau) = \int_{-1/2}^{1/2} B_i(\omega) e^{i\omega}$$

 $i\omega\tau d\omega = \frac{\operatorname{sinc}(\tau\delta) \cos(\omega_i \tau)}{\delta}$

Tobar, F. (2019). Band-limited Gaussian processes: The sinc kernel. Advances in Neural Information Processing Systems, 32.

(De)biased semi-parametric inference

The corresponding ACF to each basis is given by

$$\rho_i(\tau) = \int_{-1/2}^{1/2} B_i(\omega) \ e^{i\omega\tau} \ \mathrm{d}\omega = \frac{\operatorname{sinc}(\tau\delta) \ \cos(\omega_i \tau)}{\delta}$$

The biased basis $\tilde{B}(\omega)$ is calculated similar to before

$$\tilde{B}_{i}(\omega) = 2 \times \operatorname{Re}\left\{\sum_{\tau=0}^{n-1} \left(1 - \frac{\tau}{n}\right) \rho_{i}(\tau) e^{-i\omega\tau}\right\} - \phi_{i}(0)$$

Tobar, F. (2019). Band-limited Gaussian processes: The sinc kernel. Advances in Neural Information Processing Systems, 32.

The biased bases

Computing the debiased Welch estimator

We are required to fit a large number of basis to data that we've established is non-Gaussian, so how?

Once we've established strong mixing we appeal to the central limit theorem and treat the data as Gaussian for a big enough m

$$\hat{\vartheta} = \arg\min_{\vartheta} \left\{ \operatorname{var}\left[\bar{I}_{L}(\omega)\right]^{1} \left(\bar{I}_{L}(\omega) - \vartheta \tilde{B}(\omega)\right)^{2} \right\}$$
This term have is a real plane of it's element of $f(\omega)$

This term here is a problem as it's dependent on $f(\omega)$

Mathematical Intricacies

The main mathematical results of this work establish two results:

1.
$$\lim_{L \to \infty} \operatorname{var}[\overline{I}_L(\omega)] = c \operatorname{var}[I_L(\omega)]$$

2.
$$\operatorname{var}[I_L(\omega)] = \overline{I}_L(\omega)^2 + \mathcal{O}_p\left(\frac{1}{m} + \frac{\log L}{L}\right)$$

-)], for c constant over ω

Mathematical Intricacies

The main mathematical results of this work establish two results:

1.
$$\lim_{L \to \infty} \operatorname{var}[\overline{I}_L(\omega)] = c \operatorname{var}[I_L(\omega)]$$

2.
$$\operatorname{var}[I_L(\omega)] = \overline{I}_L(\omega)^2 + \mathcal{O}_p\left(\frac{1}{m} + \frac{\log L}{L}\right)$$

$$\hat{\vartheta} = \arg\min_{\vartheta} \left\{ \operatorname{var} \left[\bar{I}_{L}(\omega) \right]^{-1} \left(\bar{I}_{L}(\omega) - \vartheta \check{B}(\omega) \right)^{2} \right\}$$

-), for c constant over ω

Mathematical Intricacies

The main mathematical results of this work establish two results:

1.
$$\lim_{L \to \infty} \operatorname{var}[\overline{I}_L(\omega)] = c \operatorname{var}[I_L(\omega)]$$

2.
$$\operatorname{var}[I_L(\omega)] = \overline{I}_L(\omega)^2 + \mathcal{O}_p\left(\frac{1}{m} + \frac{\log L}{L}\right)$$

$$\hat{\vartheta} = \arg\min_{\vartheta} \left\{ \begin{bmatrix} \bar{I}_L(\omega) \end{bmatrix} \right\}$$
This solut

-), for c constant over ω

$$^{-2}\left(\bar{I}_{L}(\omega)-\vartheta\check{B}(\omega)\right)^{2}\right\}$$

tion is analytical!

Welch estimates

Reversing Attenuation

Performance over repeated simulations Percival and Walden's AR(4) model

MSE $[I_n(\omega)] = (\text{Bias } [I_n(\omega)])^2 + \text{Var } [I_n(\omega)]$

Some code in development

Non-Australians should look up Gary Moorcroft Mark of the Year

Some code in development

Non-Australians should look up Gary Moorcroft Mark of the Year

Thank you, and check out this research

- with a focus on Bayesian time series analysis.
- modeling of turbulent dispersion. Nonlinear Processes in Geophysics, 24(3), 481-514.
- Shumway, R. H., & Stoffer, D. S. (2000). Time series analysis and its applications (Vol. 3). New York: springer.
- 106(2), 251-266.
- trajectories. Journal of the Royal Statistical Society Series C: Applied Statistics, 65(1), 29-50.
- over short, modified periodograms. IEEE Transactions on audio and electroacoustics, 15(2), 70-73.

lachlan.astfalck@uwa.edu.au

• Kirch, C., Edwards, M. C., Meier, A., & Meyer, R. (2019). Beyond Whittle: Nonparametric correction of a parametric likelihood

• Lilly, J. M., Sykulski, A. M., Early, J. J., & Olhede, S. C. (2017). Fractional Brownian motion, the Matérn process, and stochastic

• Percival, D. B., & Walden, A. T. (2020). Spectral analysis for univariate time series (Vol. 51). Cambridge University Press.

• Sykulski, A. M., Olhede, S. C., Guillaumin, A. P., Lilly, J. M., & Early, J. J. (2019). The debiased Whittle likelihood. Biometrika,

• Sykulski, A. M., Olhede, S. C., Lilly, J. M., & Danioux, E. (2016). Lagrangian time series models for ocean surface drifter

• Tobar, F. (2019). Band-limited Gaussian processes: The sinc kernel. Advances in Neural Information Processing Systems, 32. • Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging

