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Coastal Wave Measurements

Ocean Beach sea-surface heights



Complex-valued data

Model simulation of Lagrangian drifters



Multivariate data

3D Shallow Island Wakes



Multidimensional data

Sentinel-2 Sea Surface Imaging



Coastal Wave Measurements

Ocean Beach sea-surface heights



Coastal Wave Measurements

z

h

Pressure is attenuated as Kp(k, z)2 = ( cosh(kh + kz)
cosh(kh) )

2
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• Assume we observe a real-valued stochastic process  for , 
observed at the interval .

{Xt} t ∈ ℤ
Δ

• Assume  and Gaussian E[Xt] = constant {Xt}

• If  is second-order stationary we define the auto-covariance 
function 

{Xt}
γ(τ) = E[XtXt+τ]
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• We can specify a parametric form for  and fit via maximum 
likelihood.

γ(τ)

• Once we’ve fit a  we can interpolate data, make predictions, and 
everything else a GP does.

γ(τ)

•  must be positive semi-definite.γ(τ)
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Bochner’s Theorem

If  is absolutely summable then there exists a power spectral density  
that forms a Fourier pair with 





γ(τ) f(ω)
γ(τ)

γ(τ) = ∫
1/2

−1/2
f(ω)eiωτ dω, f(ω) =

∞

∑
τ=∞

γ(τ)e−iωτ

(aka Wiener-Khinchin’s Theorem)



The ACF vs the PSD
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Empirically estimating the PSD

What’s a good empirical estimate of ?f(ω) = ℱ{γ(τ)}

In(ω) =
1
n

n−1

∑
t=0

xte−iωτ

2

=
n−1

∑
τ=−(n−1)

̂γb(τ)e−iωτ

This defines the periodogram. This gives a strictly positive, although biased, 
estimate to .f(ω)

             ̂γb(τ) =
1
n

n−|τ|−1

∑
t=0

xtxt+|τ| E[ ̂γb(τ)] = (1 −
|τ |
n ) γ(τ)



The periodogram is noisy and inconsistent
In(ω) ∼ E[In(ω)] 𝒳2
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The periodogram is noisy and inconsistent
In(ω) ∼ E[In(ω)] 𝒳2

2 log In(ω) ∼ log E[In(ω)] + log 𝒳2
2

(approximately)
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Welch’s Estimate
Welch’s estimator partitions a time-series into  overlapping blocks of length , 
calculates the taper periodograms of each block, , and is defined as 


            


m L
Ij
L(ω; h)

ĪL(ω; h) =
1
m

j−1

∑
j=0

Ij
L(ω; h)

Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging 
over short, modified periodograms. IEEE Transactions on audio and electroacoustics, 15(2), 70-73.
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Welch’s Estimate of Wave Data

Signal

Noise-floor



The periodogram is blurred
Seeing as the periodogram is defined from a biased estimate of the ACF, we 
may also suspect that  is also biased.
In(ω)



Fejer’s kernel

Define Fejer’s kernel


 


The blurred PSD is 

ℱn(ω) =
1
n ( 1 − cos(nω)

1 − cos(ω) )
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Fejer’s kernel

Define Fejer’s kernel


 


The blurred PSD is 

ℱn(ω) =
1
n ( 1 − cos(nω)

1 − cos(ω) )
=

n−1

∑
τ=1−n

(1 −
|τ |
n ) e−iωτ

f̃(ω) = f(ω) * ℱn(ω) Bias decreases as  increasesn



What’s wrong with Welch’s estimate?

• Welch’s estimate enforces consistency by partitioning and averaging


• As the  blocks increase the variance of our estimator decreases


• Also, as  increases, block length  decreases (and hence bias increases)

m
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What’s wrong with Welch’s estimate?

• Welch’s estimate enforces consistency by partitioning and averaging


• As the  blocks increase the variance of our estimator decreases


• Also, as  increases, block length  decreases (and hence bias increases)

m

m L

We become increasingly more confident in an 
estimate that is increasingly more wrong



To avoid expensive matrix inversions we can fit some  with the Whittle 
likelihood calculated in 


f(ω; θ)
𝒪(n log n)

lW(θ) = − ∑
ω∈Ωn

{log f(ω; θ) +
In(ω)

f(ω; θ) }

For a nice proof of this, see Kirch, C., et al. (2019). Beyond Whittle: Nonparametric correction of a 
parametric likelihood with a focus on Bayesian time series analysis.

How do we manage spectral bias?
Parametric Estimation
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Debiased parametric estimation
Either debias the periodogram…

lW(θ) = − ∑
ω∈Ωn

{log f(ω; θ) +
In(ω)

f(ω; θ) }
Ways we could remove bias from the periodogram:

• Tapering. But at the cost of introducing a different type of bias.

• Pre-whitening. Doesn’t always work, hard to tune.

• Collect more data at a higher sampling rate. Not really possible.

Correct the bias in 
the data?
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Biased parametric estimation
…or bias the spectral density

lW(θ) = − ∑
ω∈Ωn

{log f(ω; θ) +
In(ω)

f(ω; θ) }
Call  the biased spectral density. We need it to incorporate the effects of 
blurring and aliasing.

f̃n(ω; θ)

Blurred spectrum:           fb(ω; θ) = f(ω; θ) * ℱn(ω)

Aliased spectrum:            fa(ω; θ) =
k=∞

∑
k=−∞

f(ω + k)

Or match the model 
to the biased data?



The debiased Whittle likelihood
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likelihood. Biometrika, 106(2), 251-266.
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The debiased Whittle likelihood

lW(θ) = − ∑
ω∈Ωn

{log f̃n(ω; θ) +
In(ω)

f̃n(ω; θ) }
Where we calculate  byf̃n(ω; θ)

f̃n(ω; θ) = 2 × Re {
n−1

∑
τ=0

(1 −
τ
n ) γ(τ; θ)e−iωτ} − γ(0; θ)

We can show that E[In(ω)] = f̃n(ω; θ)

Sykulski, A. M., Olhede, S. C., Guillaumin, A. P., Lilly, J. M., & Early, J. J. (2019). The debiased Whittle 
likelihood. Biometrika, 106(2), 251-266.



Assuming a model for the waves
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• We can think about a periodogram as 
a Riemann approximation to the true 
biased PSD


• As we increase the resolution of the 
bases we converge on the true 
integral


• As we increase  we converge on the 
true biased PSD

m

Debiasing Welch’s estimate 
Riemann approximation to the PSD



We model our spectral density with the 
rectanglular basis





and solve similar to the parametric case.

f(ω) = ∑
i

aiBi(ω)

Debiasing Welch’s estimate 
Riemann approximation to the PSD



(De)biased semi-parametric inference

Tobar, F. (2019). Band-limited Gaussian processes: The sinc kernel. Advances in Neural Information Processing Systems, 32.
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(De)biased semi-parametric inference
The corresponding ACF to each basis is given by

ρi(τ) = ∫
1/2

−1/2
Bi(ω) eiωτ dω =

sinc(τδ) cos(ωiτ)
δ

The biased basis  is calculated similar to beforeB̃(ω)

B̃i(ω) = 2 × Re {
n−1

∑
τ=0

(1 −
τ
n ) ρi(τ)e−iωτ} − ϕi(0)

Tobar, F. (2019). Band-limited Gaussian processes: The sinc kernel. Advances in Neural Information Processing Systems, 32.



The biased bases



Computing the debiased Welch estimator
We are required to fit a large number of basis to data that we’ve established is 
non-Gaussian, so how?


Once we’ve established strong mixing we appeal to the central limit theorem 
and treat the data as Gaussian for a big enough 
m

̂ϑ = arg min
ϑ

{var [ĪL(ω)]−1 (ĪL(ω) − ϑB̃(ω))2}

This term here is a problem as it’s dependent on f(ω)



Mathematical Intricacies
The main mathematical results of this work establish two results:
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Mathematical Intricacies
The main mathematical results of this work establish two results:


1. , for  constant over 


2.

lim
L→∞

var[ĪL(ω)] = c var[IL(ω)] c ω

var[IL(ω)] = ĪL(ω)2 + 𝒪p ( 1
m

+
log L

L )
̂ϑ = arg min

ϑ {[ĪL(ω)]−2 (ĪL(ω) − ϑB̌(ω))
2}

This solution is analytical!



Welch estimates



Reversing Attenuation



Performance over repeated simulations

Bias reduction

Maintained optimal 

convergence rate

MSE [In(ω)] = (Bias [In(ω)])
2

+ Var [In(ω)]

Percival and Walden’s AR(4) model

Optimal convergence 

in RMSE
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