

Some Recent and Rediscovered Developments in Bayes Linear Statistics

Lachlan Astfalck

School of Physics, Mathematics and Computing The University of Western Australia

With contributions from Danny Williamson and Cassie Bird

Statistics without probability

Defining Expectation Without Probability

We now define expectation (note, we still have not defined probability) of random quantity X, E[X], as the value \bar{x} you would choose if you must suffer penalty

$$L = \left(\frac{X - \bar{x}}{k}\right)^2$$

once you observe X.

Assumption: Coherence. You do not have a preference for a given penalty if you have the option for one that is certainly smaller.

ullet Consider two random quantities X and D

- Consider two random quantities X and D
- X is our quantity of interest, and D is the quantity that we observe

- Consider two random quantities X and D
- X is our quantity of interest, and D is the quantity that we observe
- Quantities are defined on the Hilbert space defined by $\langle X, Y \rangle = E[X^{\dagger}Y]$

- Consider two random quantities X and D
- X is our quantity of interest, and D is the quantity that we observe
- Quantities are defined on the Hilbert space defined by $\langle X, Y \rangle = E[X^{\dagger}Y]$
- Define the belief structure $\mathscr{B}=\mathscr{X}\cup\mathscr{D}\cup 1$

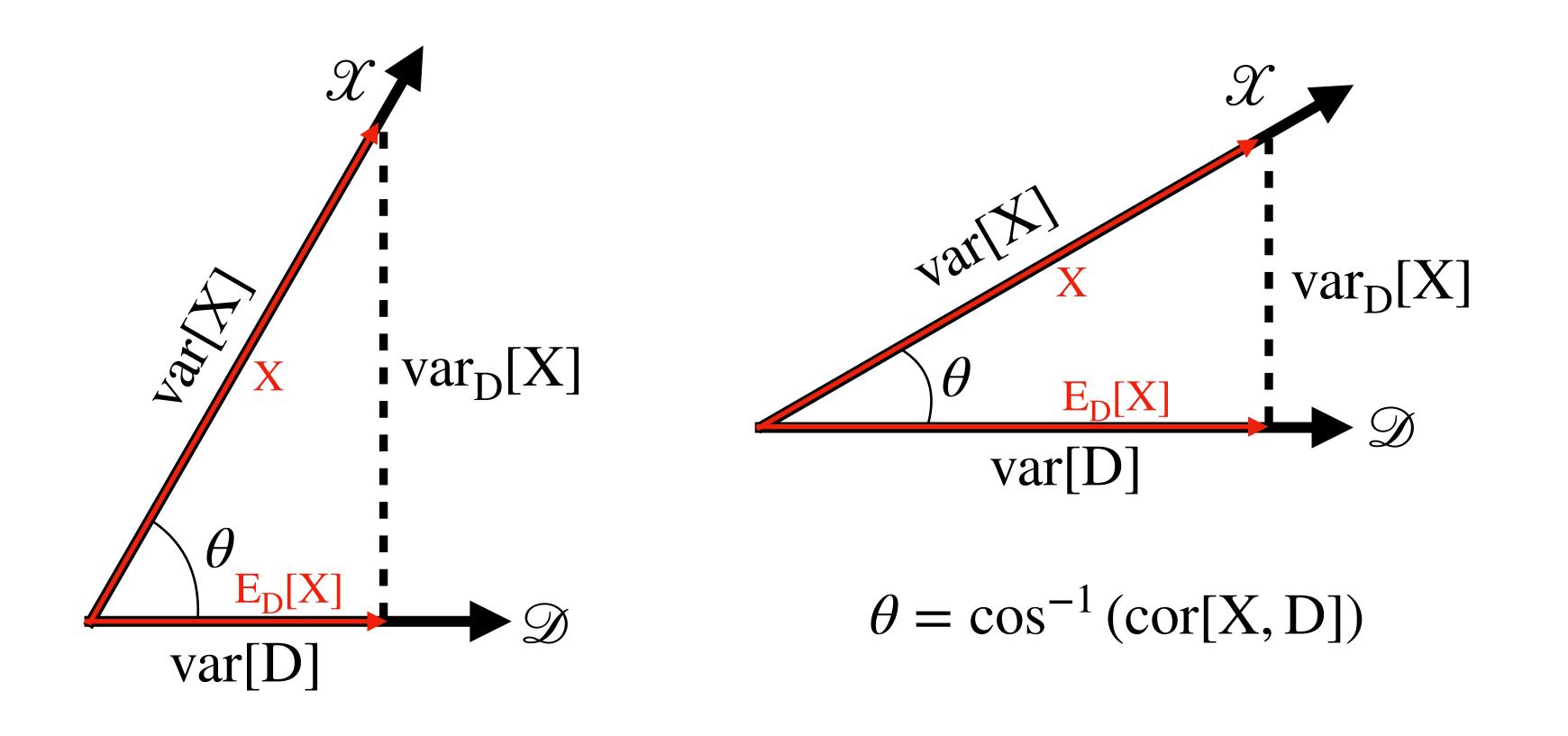
- Consider two random quantities X and D
- X is our quantity of interest, and D is the quantity that we observe
- Quantities are defined on the Hilbert space defined by $\langle X, Y \rangle = E[X^{\dagger}Y]$
- Define the belief structure $\mathscr{B}=\mathscr{X}\cup\mathscr{D}\cup 1$
- \mathscr{B} requires the specification of E[X], E[D], var[X], var[D], and cov[X,D]

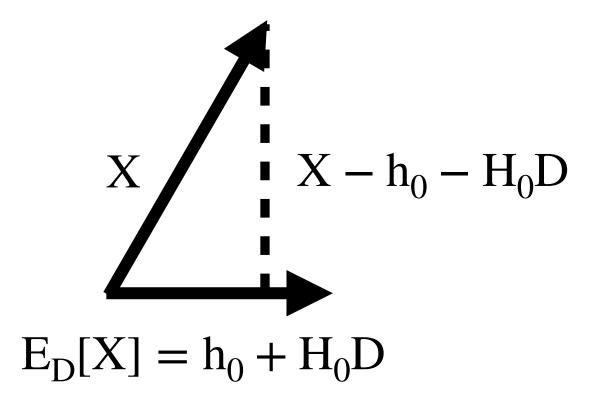
- Consider two random quantities X and D
- ullet X is our quantity of interest, and D is the quantity that we observe
- Quantities are defined on the Hilbert space defined by $\langle X, Y \rangle = E[X^{T}Y]$
- Define the belief structure $\mathscr{B}=\mathscr{X}\cup\mathscr{D}\cup 1$
- \mathscr{B} requires the specification of E[X], E[D], var[X], var[D], and cov[X,D]
- Expectation is the fundamental unit of belief and ${\mathscr B}$ is the analogy of the joint probability measure in a standard Bayesian analysis.

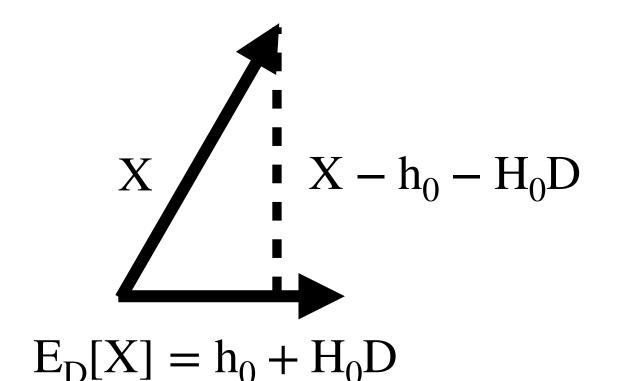
• The adjusted expectation, $E_D[X]$, is the projection of X onto affine D, h_0+H_0D

- The adjusted expectation, $E_D[X]$, is the projection of X onto affine D, h_0+H_0D
- The adjusted variance, $var_D[X]$, is the squared length $\|X-E_D[X]\|^2$

- The adjusted expectation, $E_D[X]$, is the projection of X onto affine D, h_0+H_0D
- The adjusted variance, $var_D[X]$, is the squared length $\|X-E_D[X]\|^2$

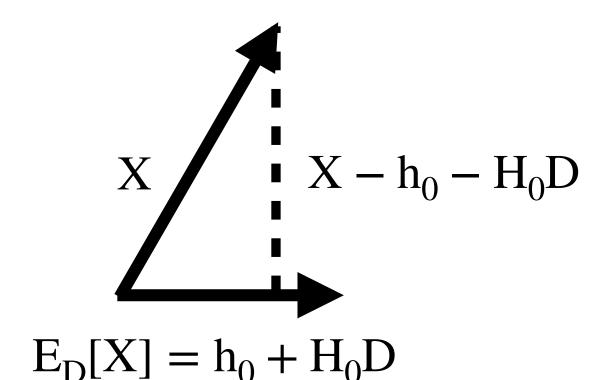






The orthogonal projection of X onto $h_0 + H_0 D$ solves:

$$\langle X - h_0 - H_0D, h_0 + H_0D \rangle = E[(X - h_0 - H_0D)^{\dagger}(h_0 + H_0D)] = 0,$$

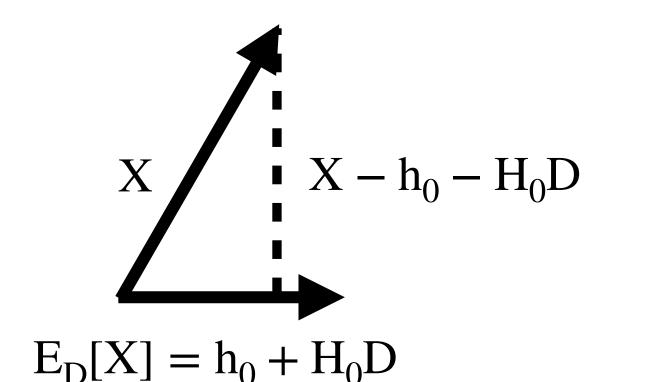


The orthogonal projection of X onto $h_0 + H_0 D$ solves:

$$\langle X - h_0 - H_0D, h_0 + H_0D \rangle = E[(X - h_0 - H_0D)^{\dagger}(h_0 + H_0D)] = 0,$$

so
$$h_0 = E[X] - H_0E[D]$$
, $H_0 = cov[X, D]var[D]^{-1}$, and

$$E_D[X] = E[X] + cov[X, D]var[D]^{-1}(E[D] - D).$$



The orthogonal projection of X onto $h_0 + H_0 D$ solves:

$$\langle X - h_0 - H_0D, h_0 + H_0D \rangle = E[(X - h_0 - H_0D)^{\dagger}(h_0 + H_0D)] = 0,$$

so
$$h_0 = E[X] - H_0E[D]$$
, $H_0 = cov[X, D]var[D]^{-1}$, and

$$E_D[X] = E[X] + cov[X, D]var[D]^{-1}(E[D] - D).$$

The length
$$var_D[X] = \|X - E_D[X]\|^2 = \langle X - E_D[X], X - E_D[X] \rangle$$
, so

$$var_{D}[X] = var[X] - cov[X, D]var[D]^{-1}cov[D, X]$$

Bayes Linear

Probabilistic Bayes

Belief space ${\mathscr B}$

E[X], E[D], var[X], var[D], cov[X, D]

Probability measure P p(X), p(D | X)

Bayes Linear

Probabilistic Bayes

Belief space ${\mathscr B}$

E[X], E[D], var[X], var[D], cov[X, D]

Probability measure P p(X), $p(D \mid X)$

Adjusted Expectation/Variance

 $E_D[X]$, $var_D[X]$

Posterior Distribution

 $E[X \mid D], p(X \mid D)$

Bayes Linear

Probabilistic Bayes

Belief space B

E[X], E[D], var[X], var[D], cov[X, D]

Probability measure P

$$p(X), p(D \mid X)$$

Adjusted Expectation/Variance

 $E_D[X]$, $var_D[X]$

Posterior Distribution

$$E[X \mid D], p(X \mid D)$$

Probability from expectation

$$P(E) = E[\mathbf{1}_E]$$

Expectation from probability

$$E[X] = \int xp(x) dx$$

Normal without normality?

$$E_D[X] = E[X] + cov[X, D]var[D]^{-1}(E[D] - D)$$

$$var_{D}[X] = var[X] - cov[X, D]var[D]^{-1}cov[D, X]$$

$$E_D[X] = E[X] + cov[X, D]var[D]^{-1}(E[D] - D)$$

$$var_{D}[X] = var[X] - cov[X, D]var[D]^{-1}cov[D, X]$$

Isn't this just the posterior equations for an update with normal prior and likelihood?

$$E[X \mid D] = E[X] + cov[X, D]var[D \mid X]^{-1}(E[D \mid X] - D)$$

$$var[X \mid D] = var[X] - cov[X, D]var[D \mid X]^{-1}cov[D, X]$$

Assume in a probabilistic Bayesian analysis that the posterior expectation is linear in D, $E[X \mid D] = AD + B$

Assume in a probabilistic Bayesian analysis that the posterior expectation is linear in D, $E[X \mid D] = AD + B$

Law of iterated expectation:
$$E[X] = E_D[E_X[X \mid D]] = AE[D] + B$$

Assume in a probabilistic Bayesian analysis that the posterior expectation is linear in D, $E[X \mid D] = AD + B$

Law of iterated expectation:
$$E[X] = E_D[E_X[X \mid D]] = AE[D] + B$$

And again:
$$E[DX^{\dagger}] = E_D [DE_X[X \mid D]] = E_D [D(AD + B)^{\dagger}]$$

= $var[D]A^{\dagger} + E[D]E[X]^{\dagger}$

Assume in a probabilistic Bayesian analysis that the posterior expectation is linear in D, $E[X \mid D] = AD + B$

Law of iterated expectation:
$$E[X] = E_D[E_X[X \mid D]] = AE[D] + B$$

And again:
$$E[DX^{\dagger}] = E_D [DE_X[X \mid D]] = E_D [D(AD + B)^{\dagger}]$$

$$= var[D]A^{\dagger} + E[D]E[X]^{\dagger}$$

Definition of covariance: $E[DX^{\dagger}] = cov[X, D] + E[D]E[X]^{\dagger}$

$$A = \operatorname{cov}[X, D]\operatorname{var}[D]^{-1}, \quad B = E[X] - AE[D]$$

Substitute A and B into $E[X \mid D] = AD + B$

$$E[X \mid D] = E[X] + cov[X, D]var[D]^{-1}(E[D] - D)$$

Substitute A and B into $E[X \mid D] = AD + B$

$$E[X | D] = E[X] + cov[X, D]var[D]^{-1}(E[D] - D)$$

Now substitute this into $var[X \mid D] = E[(X - E[X \mid D])(X - E[X \mid D])^{T}]$

$$var[X \mid D] = var[X] - cov[X, D]var[D]^{-1}cov[D, X]$$

Substitute A and B into $E[X \mid D] = AD + B$

$$E[X \mid D] = E[X] + cov[X, D]var[D]^{-1}(E[D] - D)$$

Now substitute this into $var[X \mid D] = E[(X - E[X \mid D])(X - E[X \mid D])^T]$

$$var[X \mid D] = var[X] - cov[X, D]var[D]^{-1}cov[D, X]$$

We can recover the Bayes linear equations only with the assumption that the posterior expectation is linear in D

And when does this happen?

And when does this happen?

The exponential family of distributions with conjugate prior (Diaconis et al., 1979)

And when does this happen?

The exponential family of distributions with conjugate prior (Diaconis et al., 1979)

• Normal likelihood, Normal prior (real-valued)

- Normal likelihood, Normal prior (real-valued)
- Poisson likelihood, Gamma prior (counts)

- Normal likelihood, Normal prior (real-valued)
- Poisson likelihood, Gamma prior (counts)
- Bernoulli likelihood, Beta prior (probabilities)

- Normal likelihood, Normal prior (real-valued)
- Poisson likelihood, Gamma prior (counts)
- Bernoulli likelihood, Beta prior (probabilities)
- Gamma likelihood, Gamma prior (strictly positive)

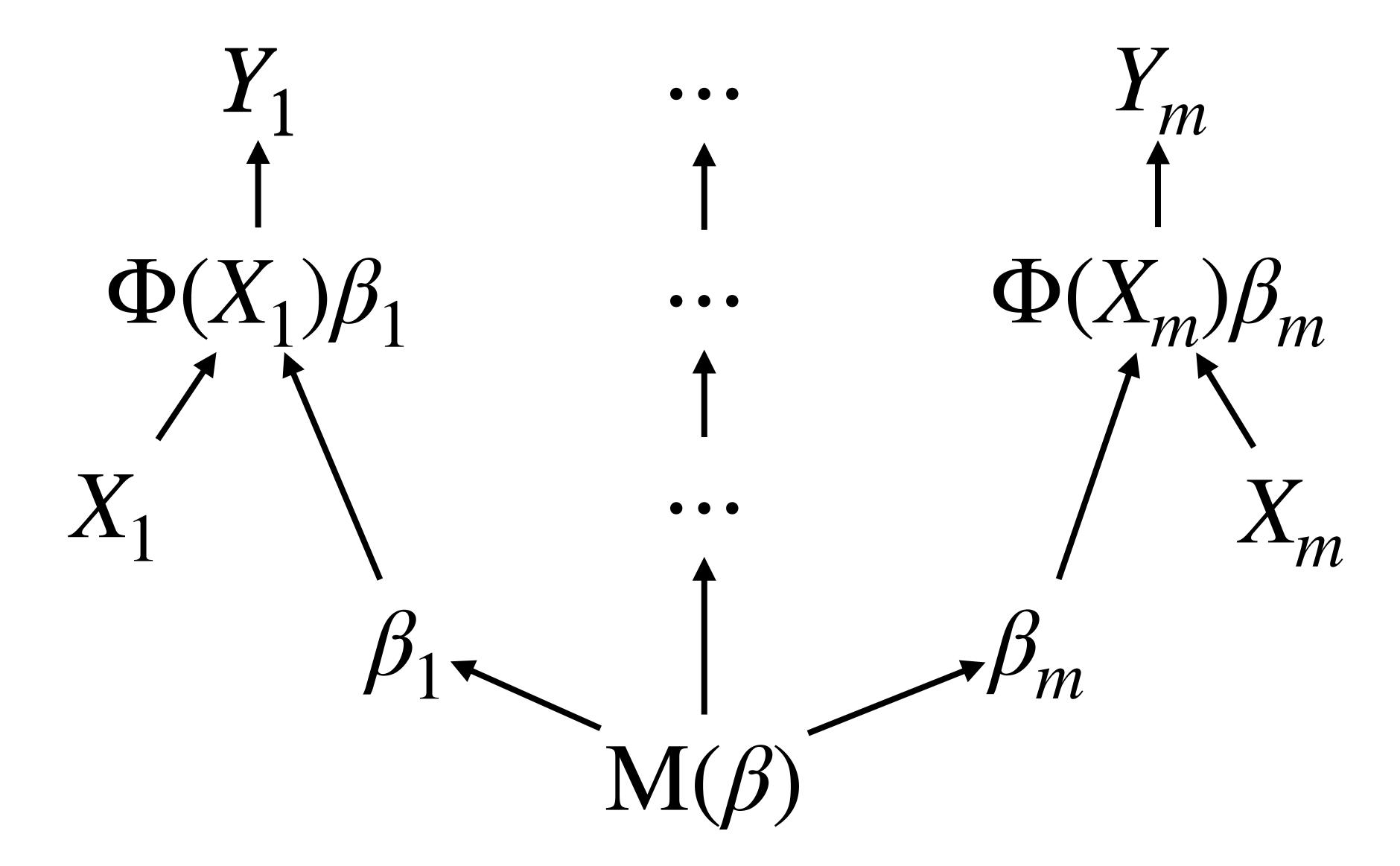
- Normal likelihood, Normal prior (real-valued)
- Poisson likelihood, Gamma prior (counts)
- Bernoulli likelihood, Beta prior (probabilities)
- Gamma likelihood, Gamma prior (strictly positive)
- Any exponential family, general conjugate prior

The exponential family of distributions with conjugate prior (Diaconis et al., 1979)

- Normal likelihood, Normal prior (real-valued)
- Poisson likelihood, Gamma prior (counts)
- Bernoulli likelihood, Beta prior (probabilities)
- Gamma likelihood, Gamma prior (strictly positive)
- Any exponential family, general conjugate prior

And some mixture models (Ericson, 1969)

Hierarchical Bayes Linear



Adjusting Beliefs of $M(\beta)$

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_m \\ \beta_1 \\ \vdots \\ \beta_m \end{bmatrix} = \begin{bmatrix} \Phi_1 & \cdots & 0 \\ \vdots & \ddots & \vdots & 0 \\ 0 & \cdots & \Phi_m \\ \hline & 0 & | \mathbf{J}_{m \times 1} \otimes \mathbf{I} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_m \\ \mathcal{M}(\beta) \end{bmatrix} + \begin{bmatrix} \mathcal{R}_1(Y) \\ \vdots \\ \mathcal{R}_m(Y) \\ \mathcal{R}_1(\beta) \\ \vdots \\ \mathcal{R}_m(\beta) \end{bmatrix}$$

Adjusting Beliefs of $M(\beta)$



Adjusting Beliefs of $M(\beta)$

Following Hodges (1998), note that $0 = M(\beta) - \beta_i + R_i(\beta)$, and so with some manipulation

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_m \\ \mathbf{0}_{km \times 1} \end{bmatrix} = \begin{bmatrix} \Phi_1 & \cdots & 0 \\ \vdots & \ddots & \vdots & 0 \\ 0 & \cdots & \Phi_m \\ \hline -\mathbf{I}_{km} & \mathbf{J}_{m \times 1} \otimes \mathbf{I}_k \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_m \\ \mathcal{M}(\beta) \end{bmatrix} + \begin{bmatrix} \mathcal{R}_m(Y) \\ \mathcal{R}_1(\beta) \\ \vdots \\ \mathcal{R}_m(\beta) \end{bmatrix}$$

Now let's make it fast

Define $\hat{\Phi}_i = (\Phi_i^\intercal \Phi_i)^{-1} \Phi_1^\intercal Y_1$ as the projection of Y_i onto the column space of Φ_i

$$\begin{bmatrix} \hat{\mathbf{\Phi}}_{1} \\ \vdots \\ \hat{\mathbf{\Phi}}_{m} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{k} & \cdots & 0 \\ \vdots & \ddots & \vdots & 0 \\ 0 & \cdots & \mathbf{I}_{k} \\ -\mathbf{I}_{km} & \mathbf{J}_{m \times 1} \otimes \mathbf{I}_{k} \end{bmatrix} \begin{bmatrix} \beta_{1} \\ \vdots \\ \beta_{m} \\ \mathcal{M}(\beta) \end{bmatrix} + \begin{bmatrix} \mathcal{R}_{1}(Y) \\ \vdots \\ \mathcal{R}_{m}(Y) \\ \mathcal{R}_{1}(\beta) \\ \vdots \\ \mathcal{R}_{m}(\beta) \end{bmatrix}$$

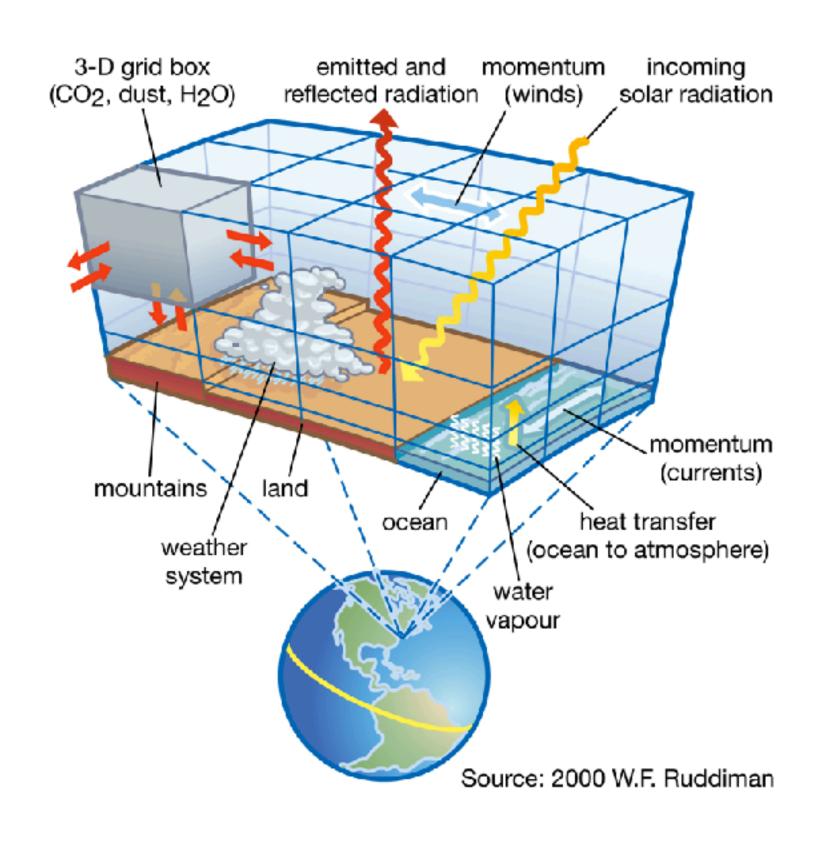
Now let's make it fast

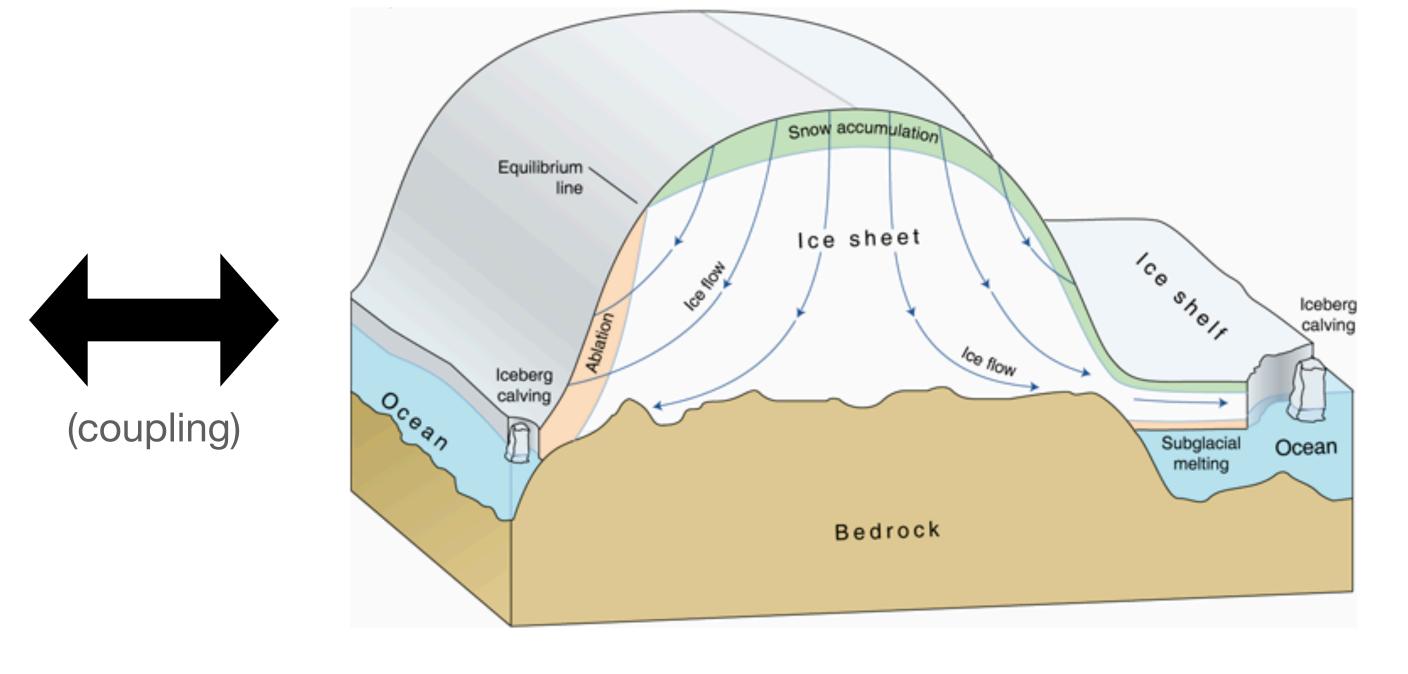
Define $\hat{\Phi}_i = (\Phi_i^\intercal \Phi_i)^{-1} \Phi_1^\intercal Y_1$ as the projection of Y_i onto the column space of Φ_i

$$\begin{bmatrix} \hat{\mathbf{\Phi}}_{1} \\ \vdots \\ \hat{\mathbf{\Phi}}_{m} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{k} & \cdots & 0 \\ \vdots & \ddots & \vdots & 0 \\ 0 & \cdots & \mathbf{I}_{k} \\ \hline -\mathbf{I}_{km} & \mathbf{J}_{m\times 1} \otimes \mathbf{I}_{k} \end{bmatrix} \begin{bmatrix} \beta_{1} \\ \vdots \\ \beta_{m} \\ \mathcal{M}(\beta) \end{bmatrix} + \begin{bmatrix} \mathcal{R}_{1}(Y) \\ \vdots \\ \mathcal{R}_{m}(Y) \\ \mathcal{R}_{1}(\beta) \\ \vdots \\ \mathcal{R}_{m}(\beta) \end{bmatrix}$$

This is a general solution for all linear hierarchical regression models

Modelling glacier dynamics is hard...

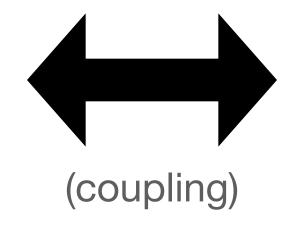




Global Circulation Models (GCM)

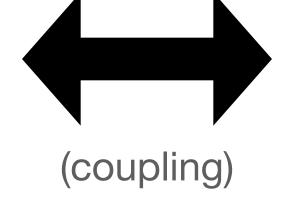
Regional Ice Sheet Models

Global Circulation Model



Ice Sheet Model

Atmosphere

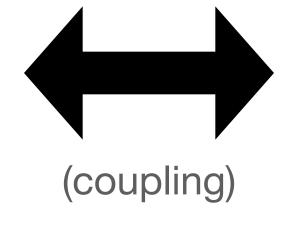


Ice Sheet Model

Marine

Atmosphere



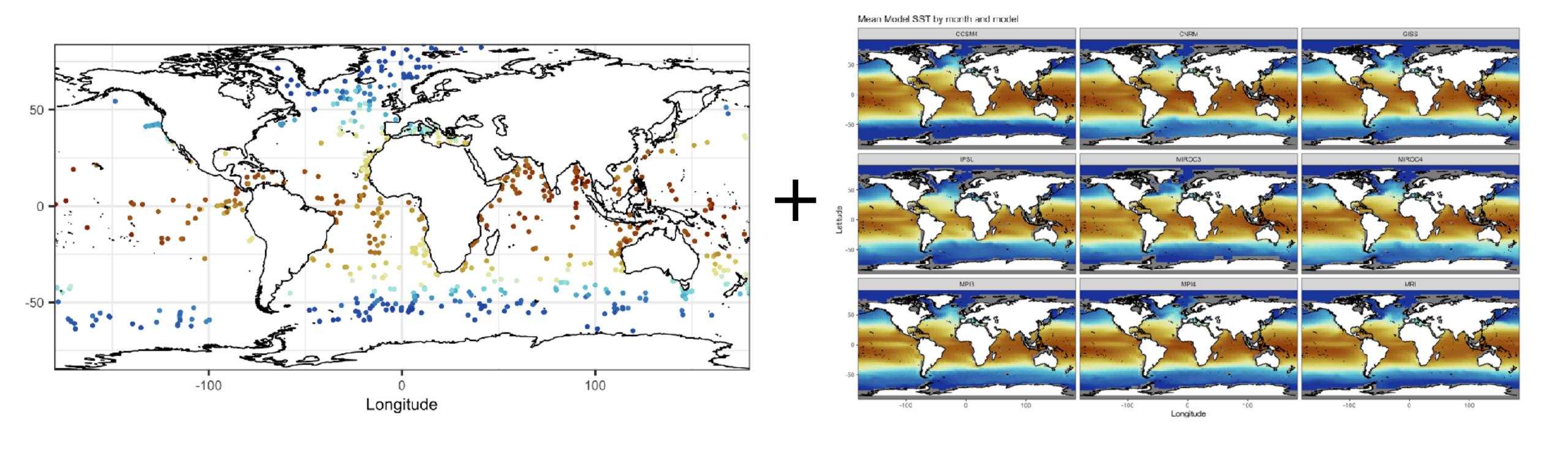


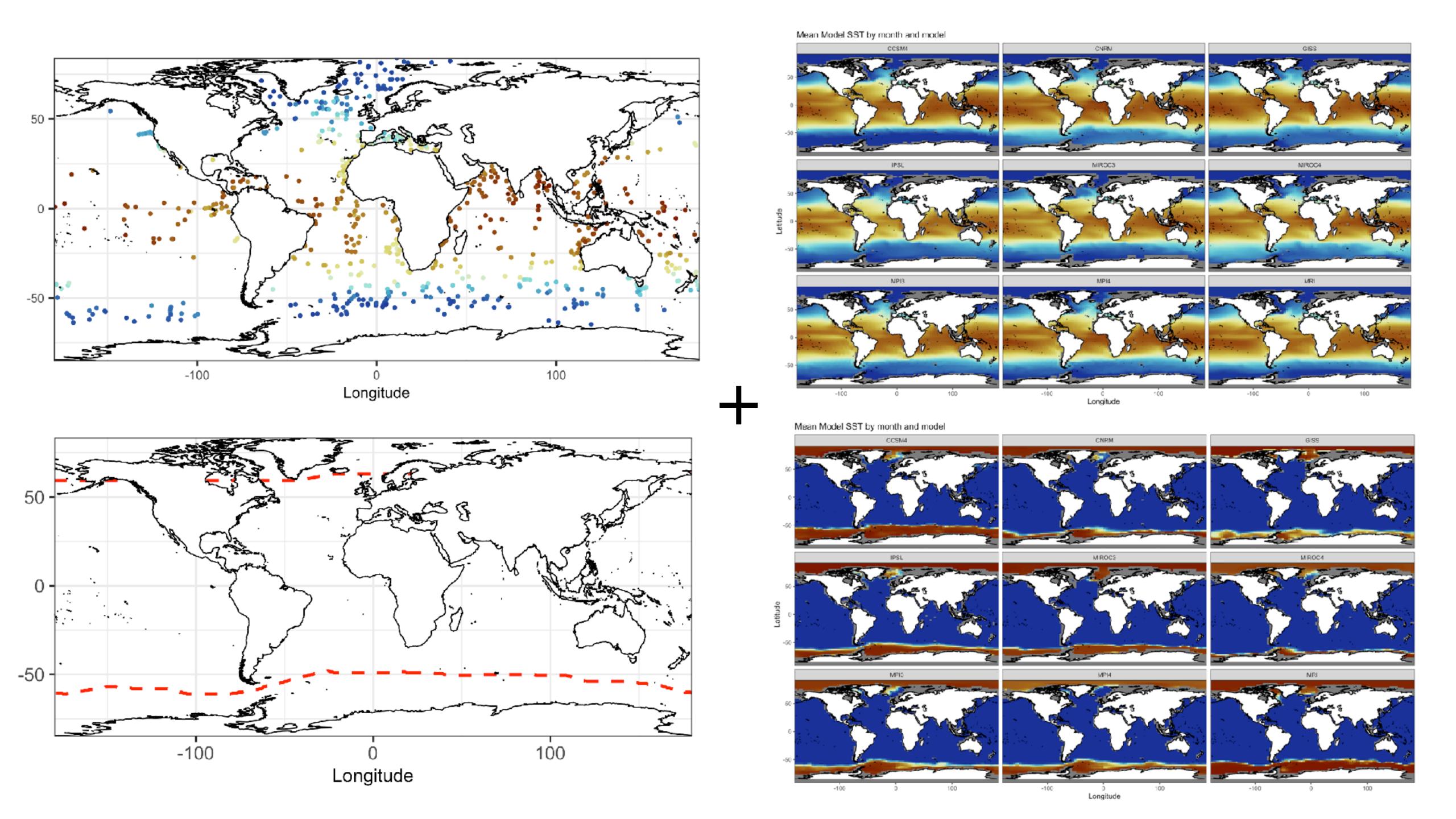
Ice Sheet Model

How do we provide accurate joint reconstructions of sea-surface temperature and sea-ice concentration as boundary conditions?

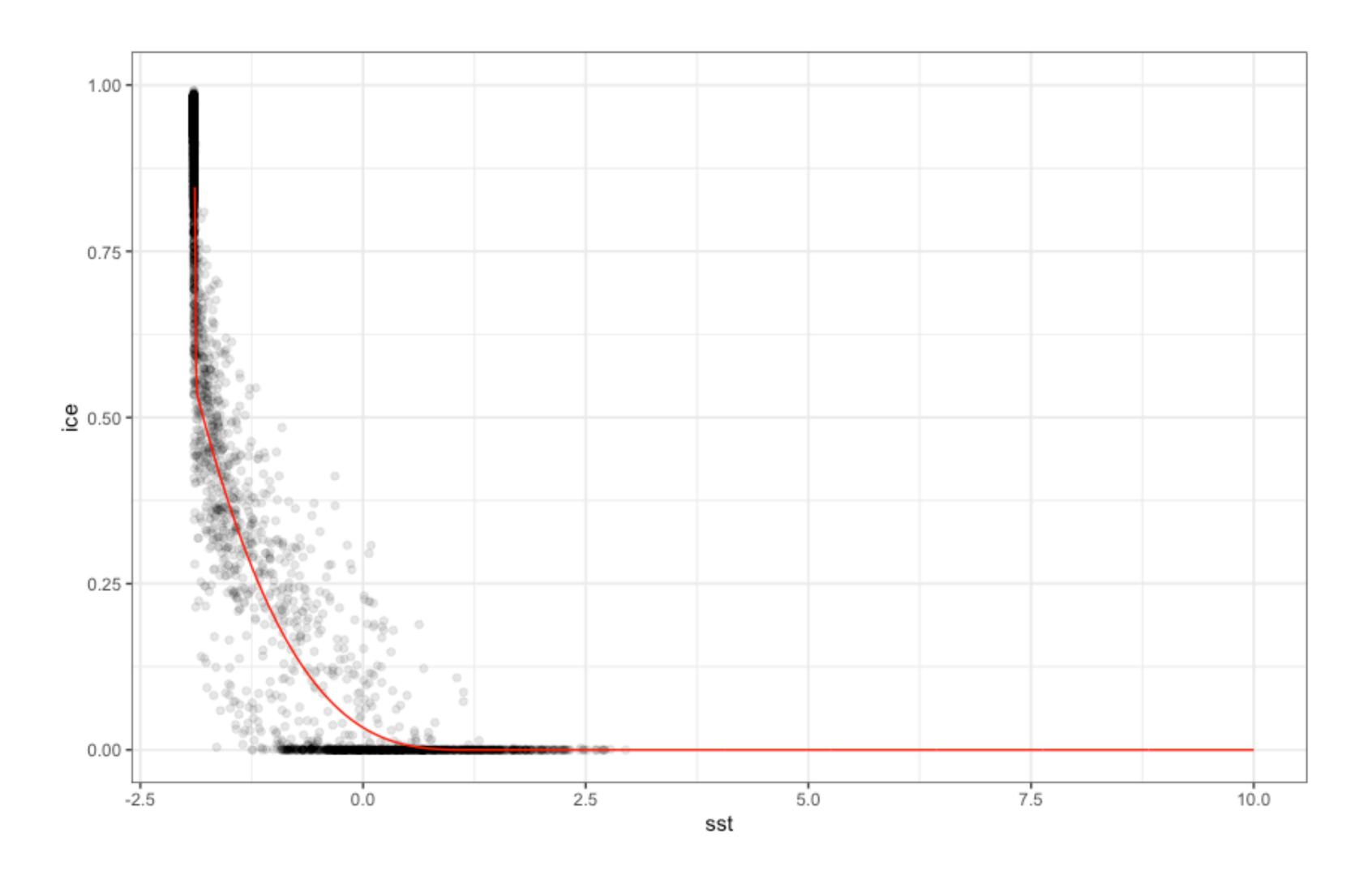
Data

Model Runs

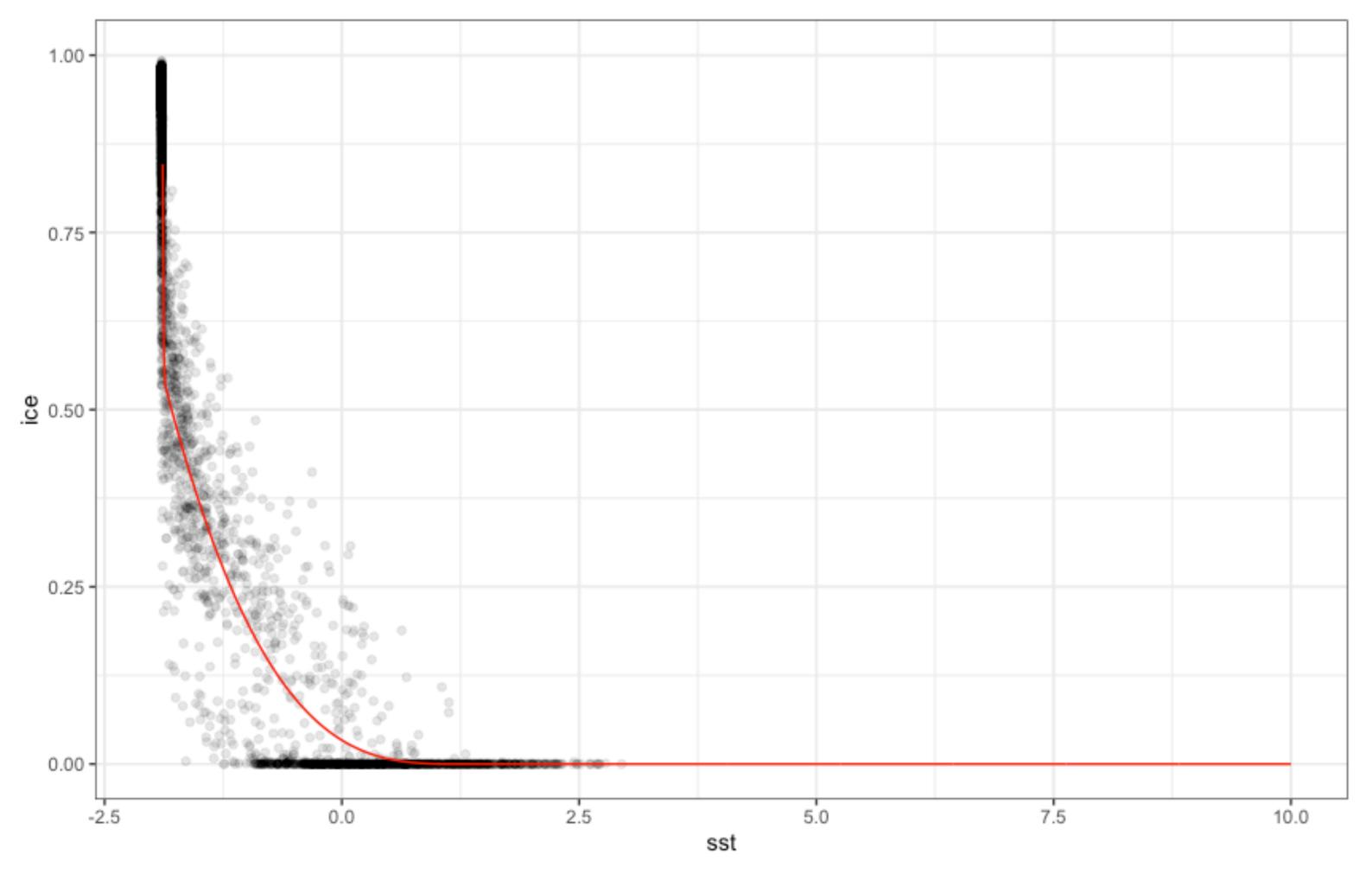




Joint behaviour of SST and SIC



Joint behaviour of SST and SIC



We have this at every grid cell in the model

The statistical model

SST

SIC

$$\mathbf{X}_{i} = \mathcal{M}(\mathbf{X}) + \mathcal{R}_{i}(\mathbf{X}) \qquad \mathbf{Y}_{i} = \Phi_{\mathbf{X}_{i}}\beta_{i} + \epsilon_{i}$$

$$\beta_{i} = \mathcal{M}(\beta) + \mathcal{R}_{i}(\beta)$$

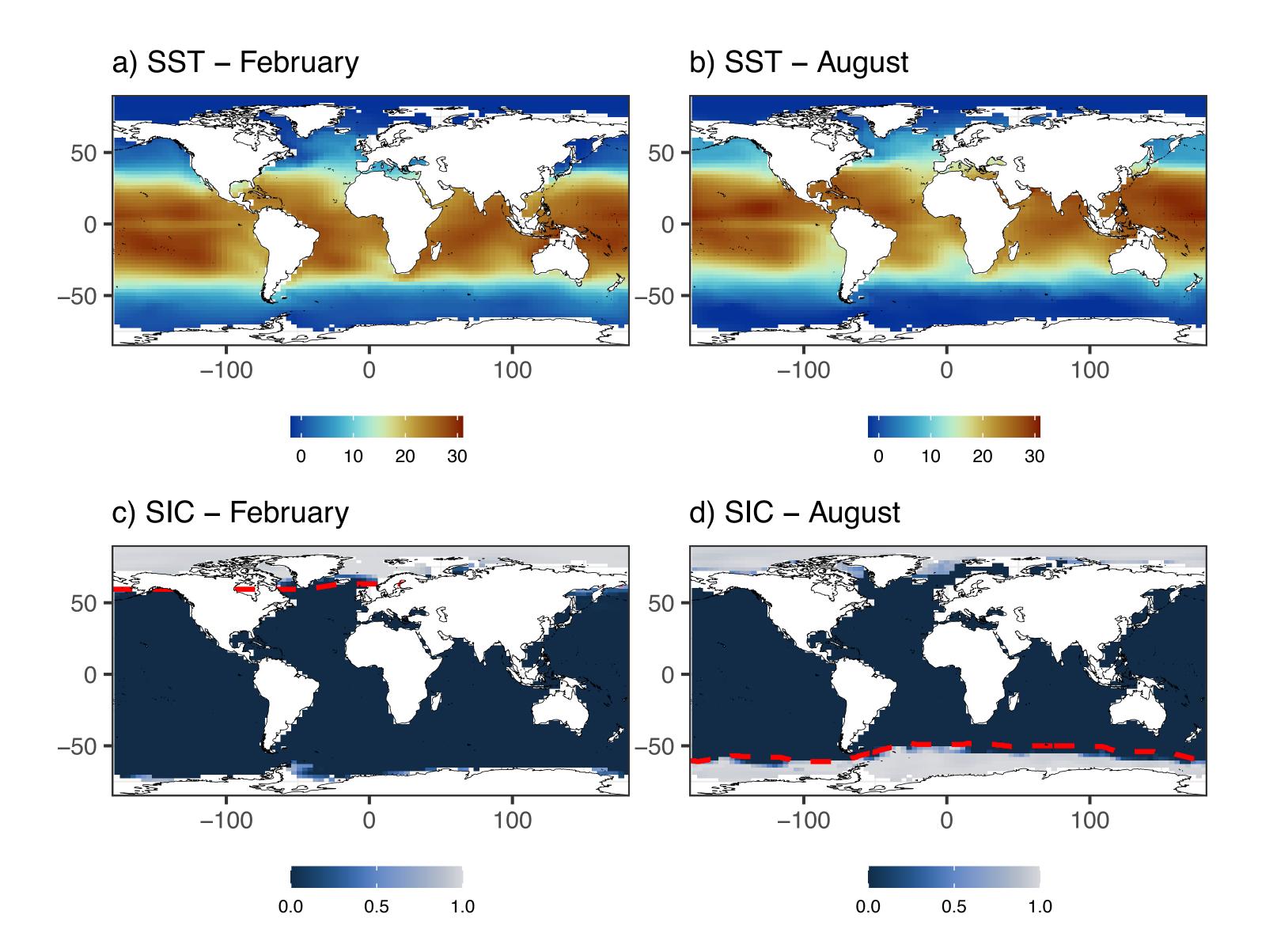
$$\mathbf{T}_{\mathbf{X}} = \mathcal{M}(\mathbf{X}) + \mathbf{U}_{\mathbf{X}} \qquad \mathbf{T}_{\mathbf{Y}} = \Phi_{\mathbf{T}_{\mathbf{X}}}\mathcal{M}(\beta) + \mathbf{U}_{\mathbf{Y}}$$

$$\mathbf{Z} = \mathbf{H}\mathbf{T}_{\mathbf{X}} + \mathbf{W}$$

The coexchangeable model of Rougier et al. (2013)

The coexchangeable process model of Astfalck et al. (2024)

Reconstructions of SST and SIC



Generalising Bayes Linear

Bissiri et al. (2016) recast probabilistic Bayes as the solution to

$$q^*(\theta) = \arg\min_{q \in \Pi} \left\{ E_{q(\theta)} \left[\sum_{i=1}^n l(\theta, x_i) \right] + \text{KLD}(q || \pi) \right\}$$

Bissiri et al. (2016) recast probabilistic Bayes as the solution to

$$q^*(\theta) = \arg\min_{q \in \Pi} \left\{ E_{q(\theta)} \left[\sum_{i=1}^n l(\theta, x_i) \right] + \text{KLD}(q || \pi) \right\}$$

The Bayes update is the solution of an optimisation that seeks the posterior distribution in Π that minimises the divergence from the data generating process.

Bissiri et al. (2016) recast probabilistic Bayes as the solution to

$$q^*(\theta) = \arg\min_{q \in \Pi} \left\{ E_{q(\theta)} \left[\sum_{i=1}^n l(\theta, x_i) \right] + \text{KLD}(q || \pi) \right\}$$

The Bayes update is the solution of an optimisation that seeks the posterior distribution in Π that minimises the divergence from the data generating process.

This provides an immediate connection to Bayes linear methods being the solution of a (different) optimisation problem.

Bissiri et al. (2016) recast probabilistic Bayes as the solution to

$$q^*(\theta) = \arg\min_{q \in \Pi} \left\{ E_{q(\theta)} \left[\sum_{i=1}^n l(\theta, x_i) \right] + \text{KLD}(q || \pi) \right\}$$

The Bayes update is the solution of an optimisation that seeks the posterior distribution in Π that minimises the divergence from the data generating process.

This provides an immediate connection to Bayes linear methods being the solution of a (different) optimisation problem.

What do we achieve by playing with Π ?

A generalised Bayes inference

Property 1: An underlying geometry \mathcal{G} , establishing the space in which inference takes place

Property 2: A notion of closeness between objects in $\mathcal G$ to relate beliefs and data

Property 3: An optimisation, within solution space C, for the closest belief representation to the data generating process

Bayes Linear

Bayes as Optimisation

The product inner product

$$\langle X, Y \rangle = E[X^{T}Y]$$

The belief structure, B

The \mathcal{L}_2 inner product $\langle f(\theta), g(\theta) \rangle = \int f(\theta)g(\theta) \, \mu(\mathrm{d}\theta)$

Probability measure $\mu(\theta)$

Bayes Linear

Bayes as Optimisation

The product inner product

$$\langle X, Y \rangle = E[X^{T}Y]$$

The belief structure, B

The \mathcal{L}_2 inner product $\langle f(\theta), g(\theta) \rangle = \int f(\theta)g(\theta) \, \mu(\mathrm{d}\theta)$

Probability measure $\mu(\theta)$

$$\|X-Y\|_{\mathscr{B}}^2$$

 $\mathrm{KLD}(F_0||f) + \mathrm{KLD}(q||\pi)$

Bayes Linear

Bayes as Optimisation

The product inner product

$$\langle X, Y \rangle = E[X^{T}Y]$$

The belief structure, \mathscr{B}

The \mathcal{L}_2 inner product $\langle f(\theta), g(\theta) \rangle = \int f(\theta)g(\theta) \, \mu(\mathrm{d}\theta)$

Probability measure $\mu(\theta)$

$$\|X-Y\|_{\mathscr{B}}^2$$

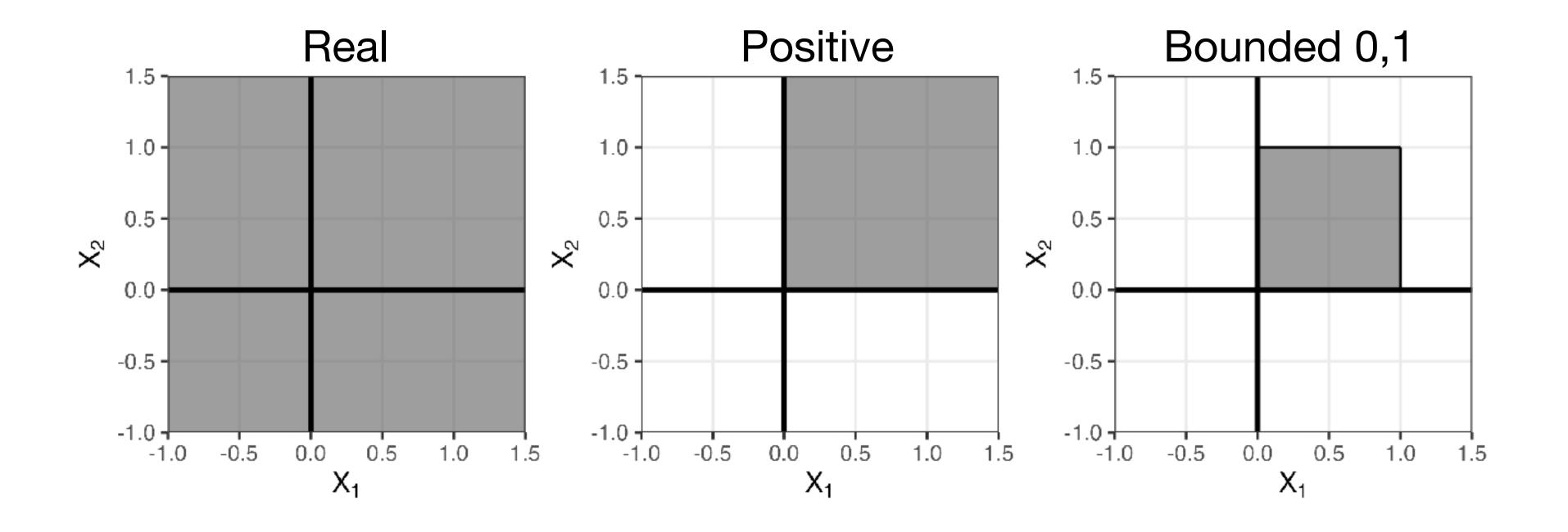
$$\mathrm{KLD}(F_0||f) + \mathrm{KLD}(q||\pi)$$

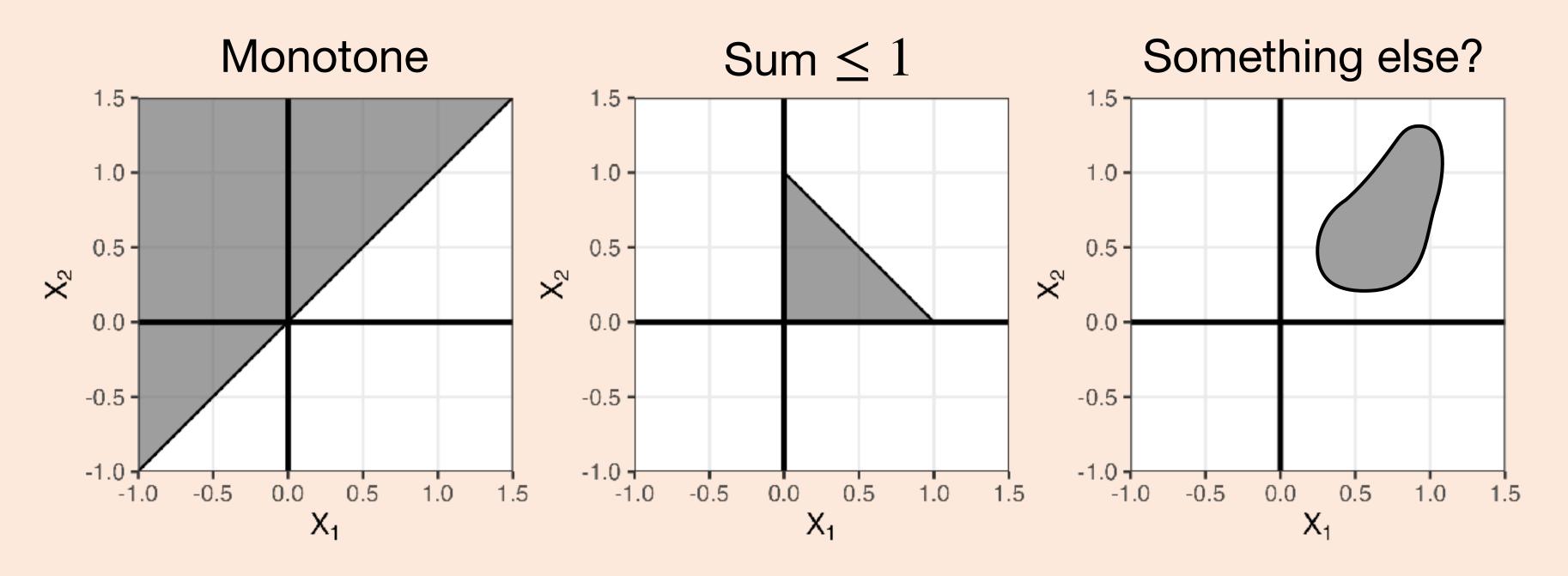
Affine space of D

$$E_D[X] = h + HD$$

Posterior distributions Π

Property 3: An optimisation, within solution space C, for the closest belief representation to the data generating process





Inference with constrained solutions

Inference with constrained solutions

In a probabilistic Bayesian analysis we generally handle this in two ways:

- 1. Assign zero weight to regions in the prior (or equivalently, add a rejection step into the MCMC).
- 2. Transform your data/model.

Inference with constrained solutions

In a probabilistic Bayesian analysis we generally handle this in two ways:

- 1. Assign zero weight to regions in the prior (or equivalently, add a rejection step into the MCMC).
- 2. Transform your data/model.

Bayes linear inference orthogonally projects old X into the affine subspace of old D

$$E_{D}[X] = \underset{h+HD}{arg min} \left\{ \langle X - h - HD, h + HD \rangle \right\}$$

Inference with constrained solutions

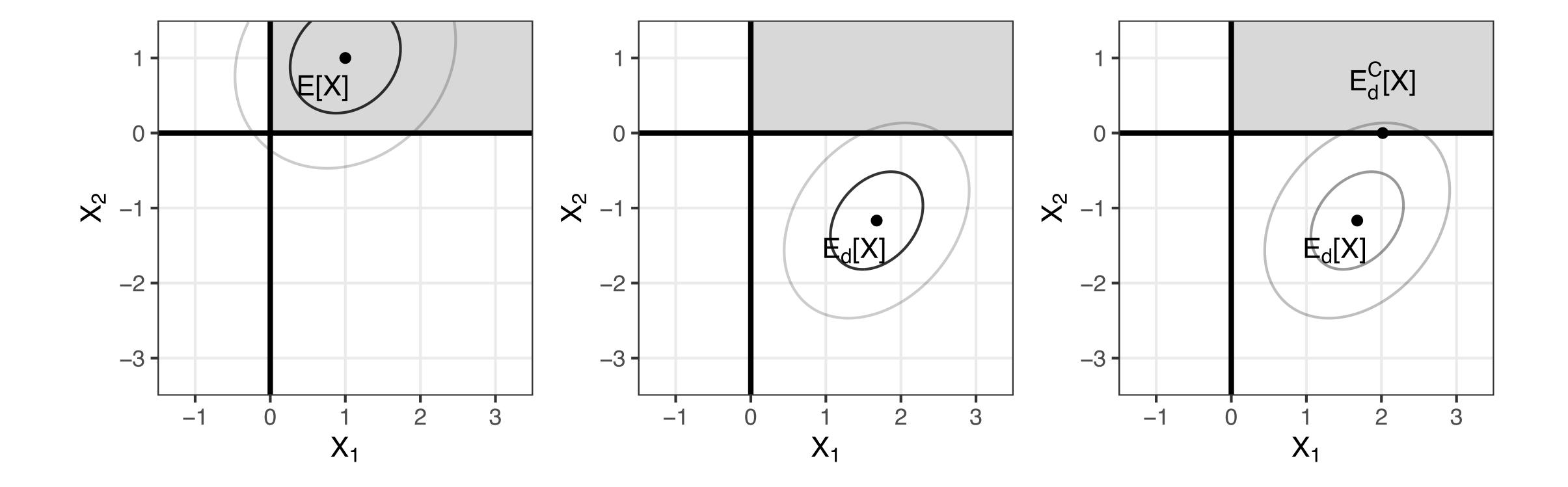
In a probabilistic Bayesian analysis we generally handle this in two ways:

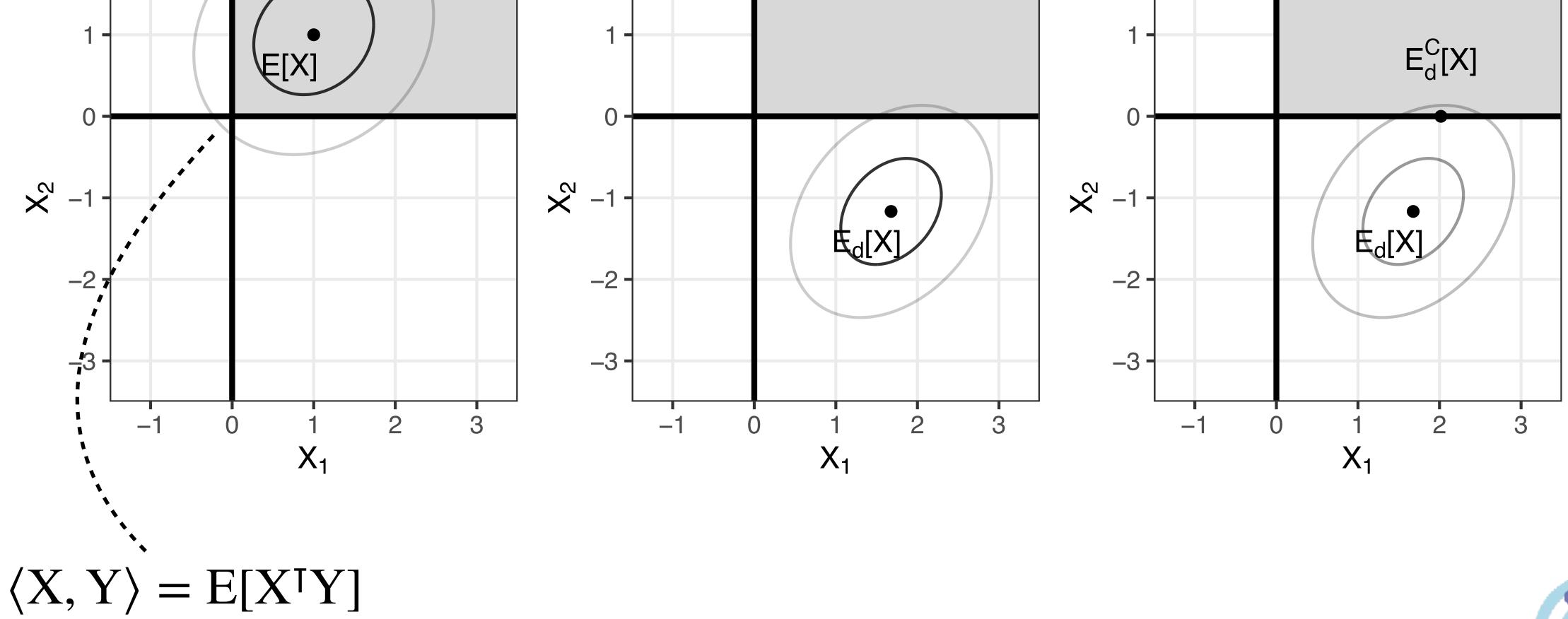
- 1. Assign zero weight to regions in the prior (or equivalently, add a rejection step into the MCMC).
- 2. Transform your data/model.

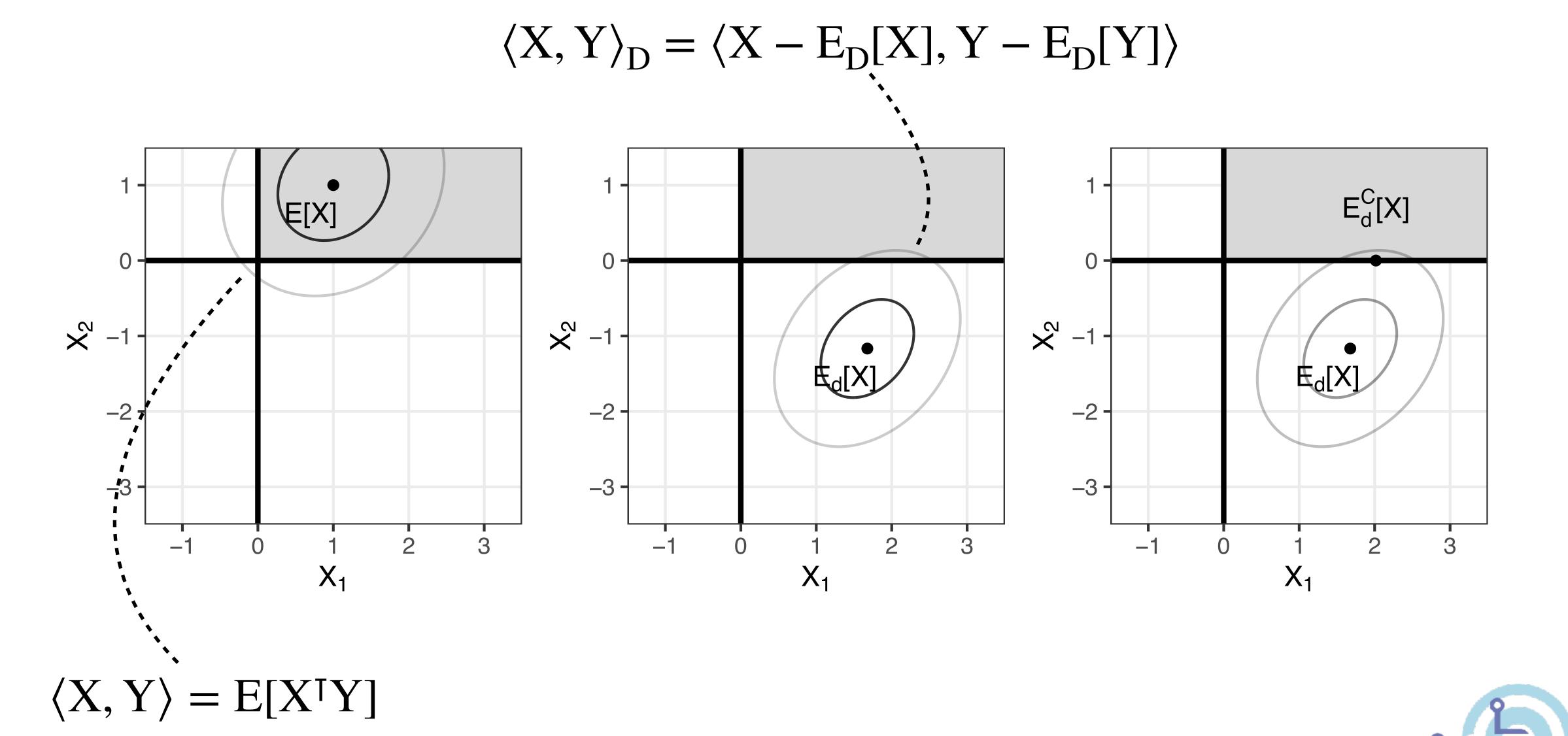
Bayes linear inference orthogonally projects old X into the affine subspace of old D

$$E_{D}[X] = \underset{h+HD}{\text{arg min}} \left\{ \langle X - h - HD, h + HD \rangle \right\}$$

Constrain the solution to lie in some subset C and call this quantity $E_d^C[X]$. Note, $E_d^C[X]$ is not necessarily affine in D.







$$\langle X,Y\rangle_D = \langle X-E_D[X],Y-E_D[Y]\rangle$$

$$\begin{array}{c} \mathbb{E}_d^C[X]\\ \mathbb{E}_d^C[X] = \underset{q \in C}{\operatorname{arg\,min}} \|E_d[X]-q\|_{\mathscr{B}}$$

Adjusted variance is calculated from an outer product assuming affine $E_D[X]$. If $E_d^C[X] \neq E_d[X]$, we break the affine assumption.

Adjusted variance is calculated from an outer product assuming affine $E_D[X]$. If $E_d^C[X] \neq E_d[X]$, we break the affine assumption.

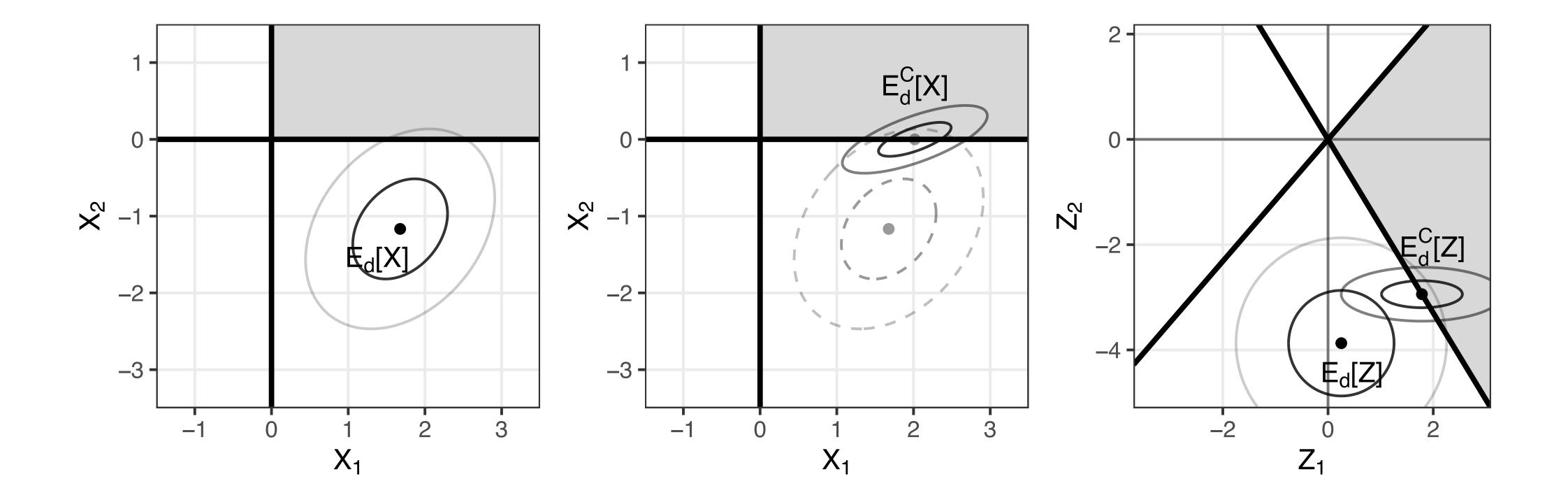
Define L as a square-root decomposition $var_D[X]=LL^\intercal$ (I like $L=Q\sqrt{\Lambda}$) and the constraint discrepancy $z=L^{-1}(E_d^{\it C}[X]-E_d[X]).$

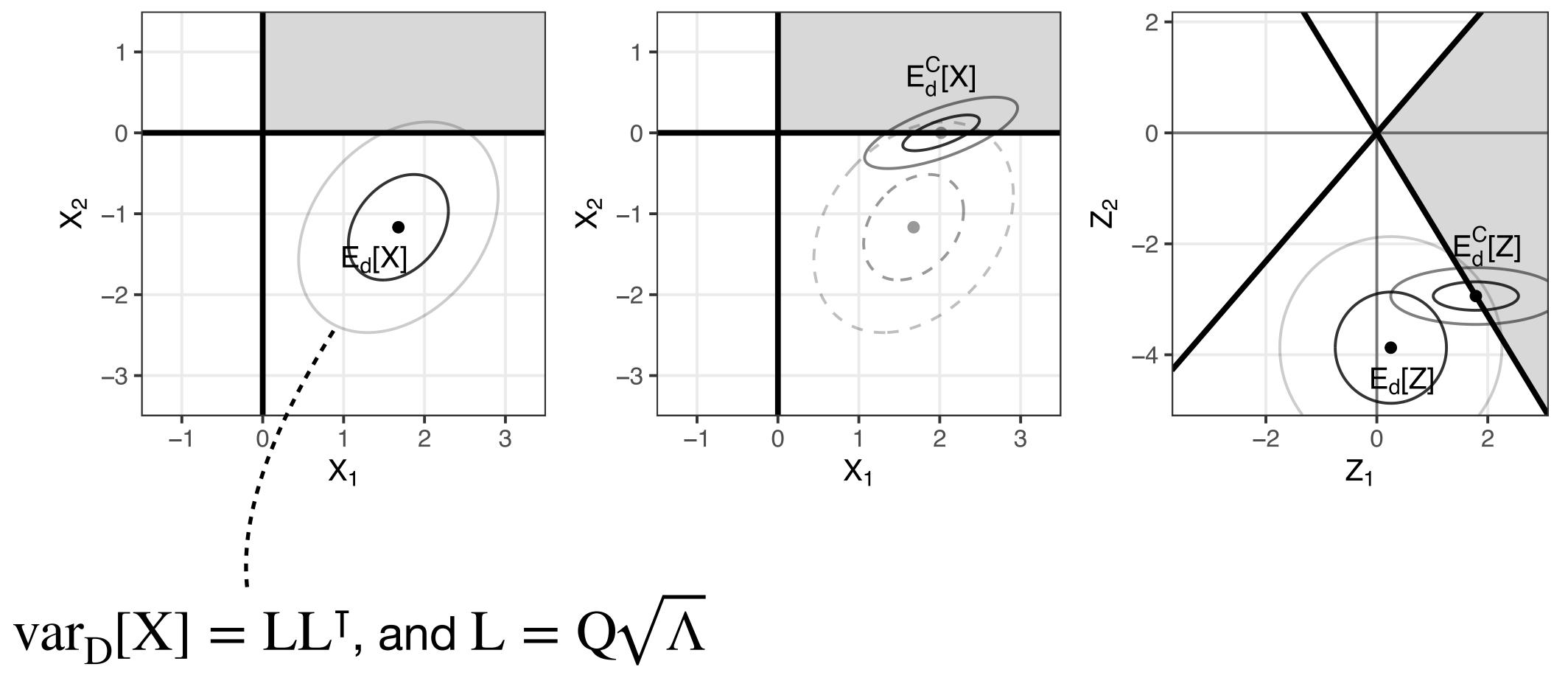
Adjusted variance is calculated from an outer product assuming affine $E_D[X]$. If $E_d^C[X] \neq E_d[X]$, we break the affine assumption.

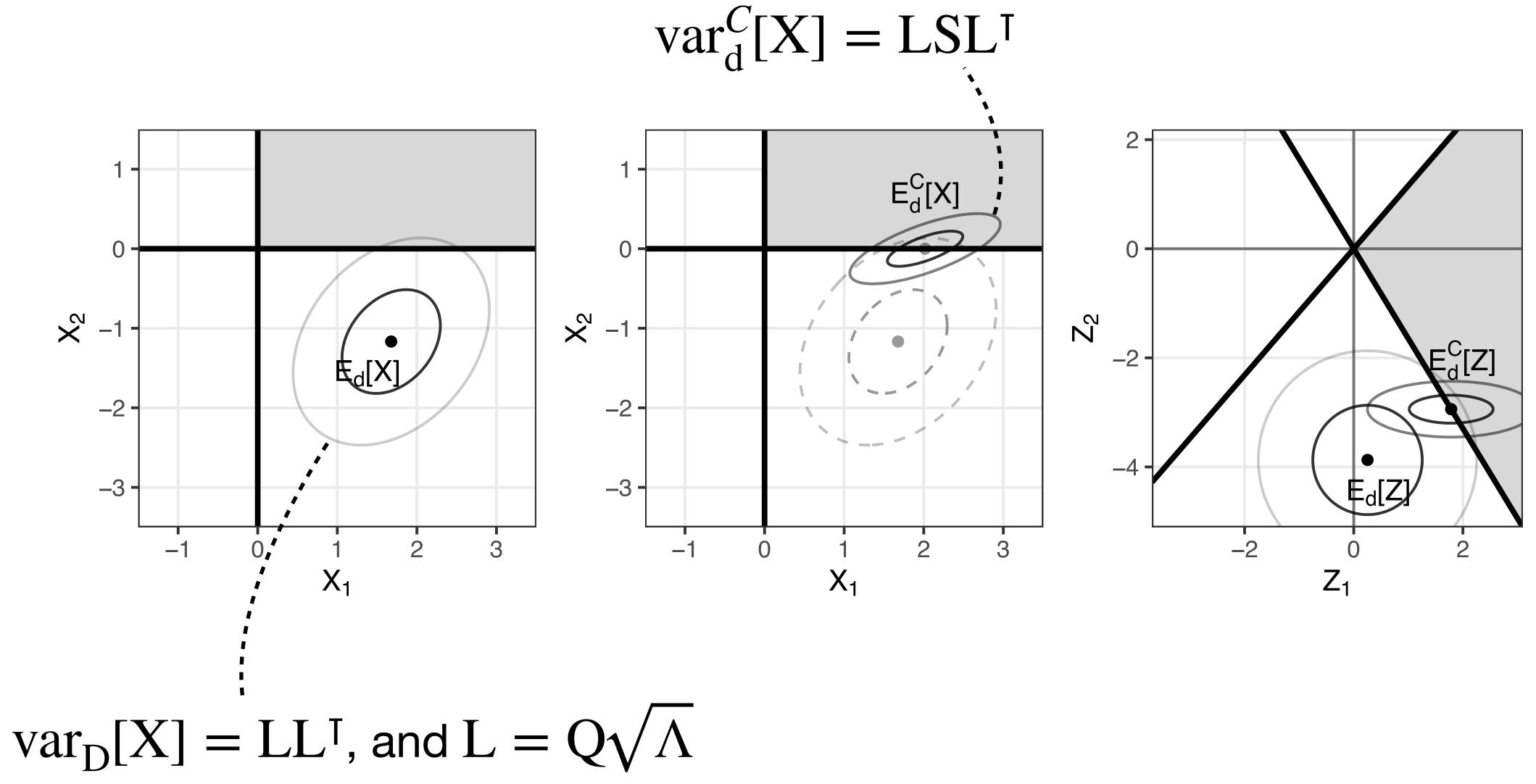
Define L as a square-root decomposition $var_D[X]=LL^\intercal$ (I like $L=Q\sqrt{\Lambda}$) and the constraint discrepancy $z=L^{-1}(E_d^{\it C}[X]-E_d[X]).$

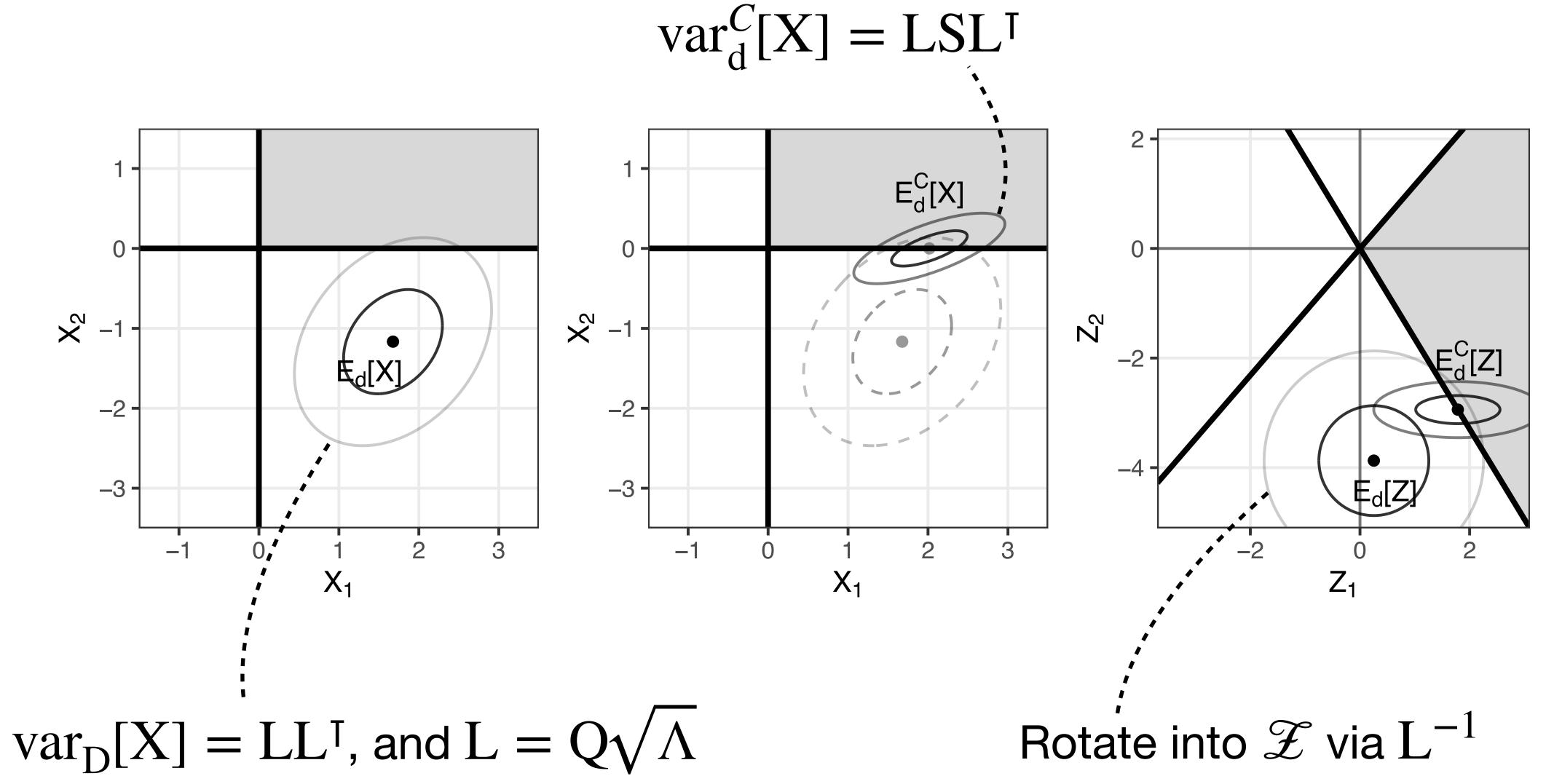
The generalised adjusted variance is $var_d^C[X] = LSL^T$, where

- 1. The limit $\lim_{|z_i| \to 0} \{S_{ii}\} = 1$
- 2. The limit $\lim_{|z_i| \to \infty} \{S_{ii}\} = 0$
- 3. $S_{ii} = f(z_i)$ is non-increasing in z_i

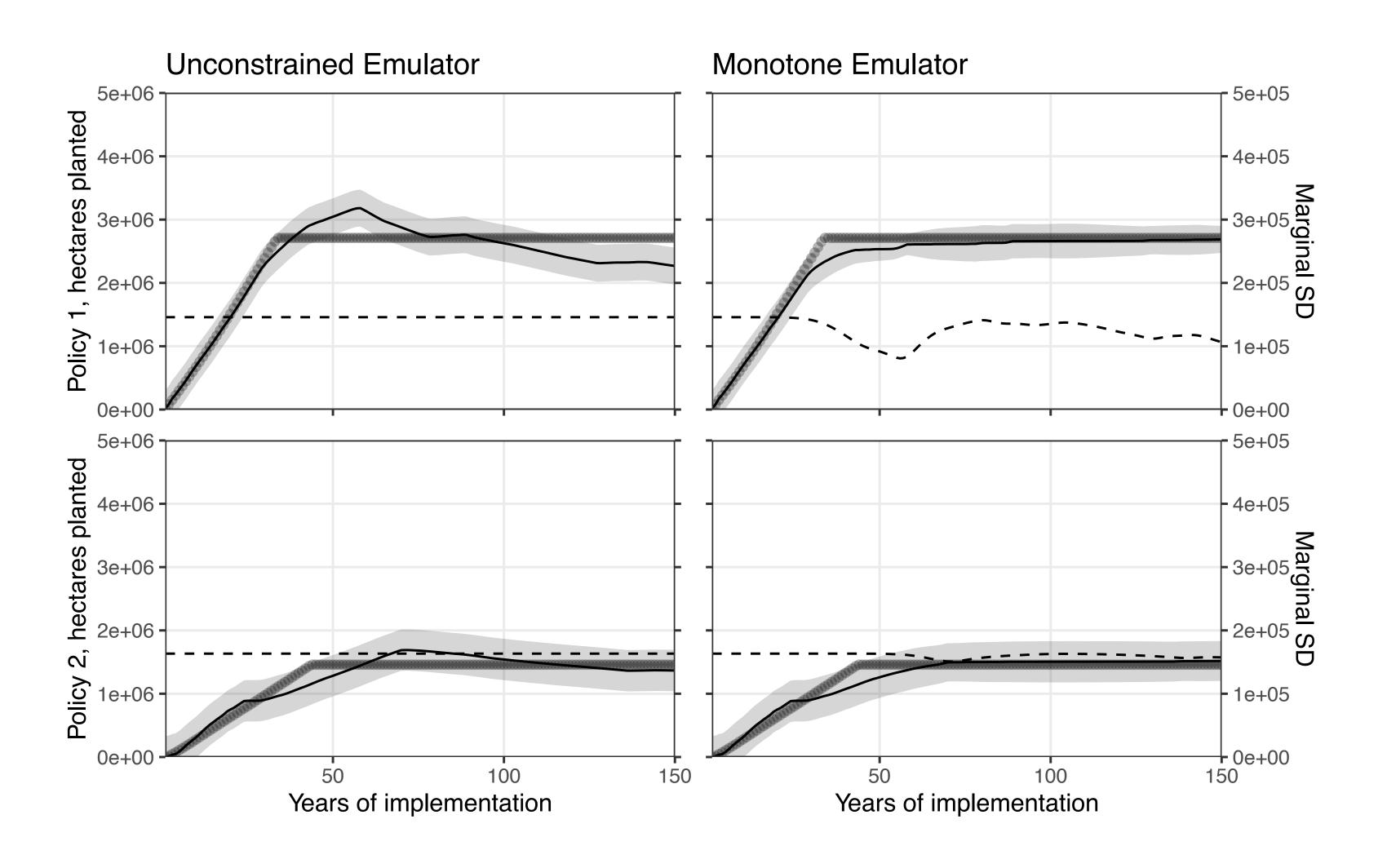




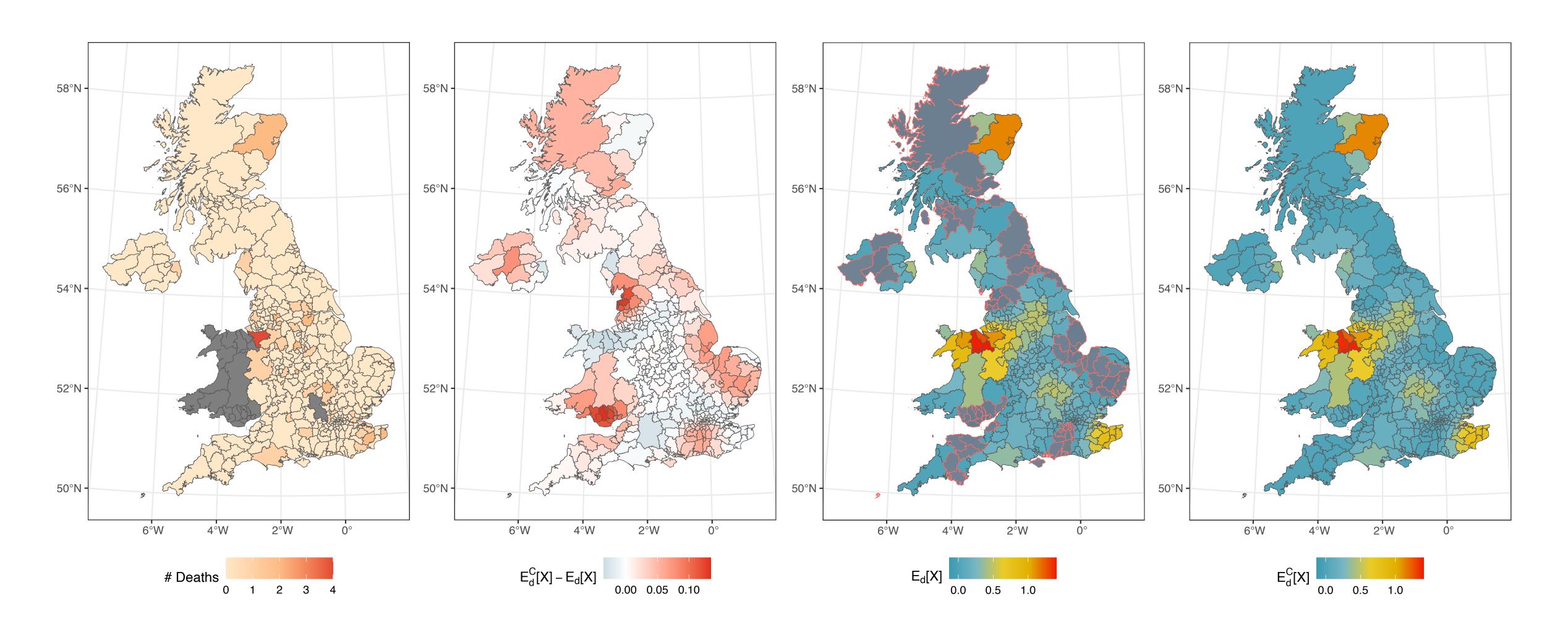




An Afforestation Uptake Model



One day of COVID19 Deaths



- Astfalck, L., Williamson, D., Gandy, N., Gregoire, L., & Ivanovic, R. (2024). Coexchangeable Process Modeling for Uncertainty Quantification in Joint Climate Reconstruction. *Journal of the American Statistical Association*, 1-14.
- Astfalck, L., Bird, C., & Williamson, D. (2024). Generalised Bayes Linear Inference. arXiv preprint arXiv:2405.14145.
- Diaconis, P., & Ylvisaker, D. (1979). Conjugate priors for exponential families. The Annals of statistics, 269-281.
- De Finetti, B. (1975). Theory of probability: A critical introductory treatment. John Wiley & Sons
- Ericson, W. A. (1969). A note on the posterior mean of a population mean. *Journal of the Royal Statistical Society:* Series B (Methodological), 31(2), 332-334.
- Goldstein, M., & Wooff, D. (2007). Bayes linear statistics: Theory and methods. John Wiley & Sons.
- Hartigan, J. A. (1969). Linear bayesian methods. Journal of the Royal Statistical Society: Series B (Methodological), 31(3), 446-454.
- Hodges, J. S. (1998). Some algebra and geometry for hierarchical models, applied to diagnostics. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(3), 497-536.
- Rougier, J., Goldstein, M., & House, L. (2013). Second-order exchangeability analysis for multimodel ensembles.
 Journal of the American Statistical Association, 108(503), 852-863.

astfalckl.github.io/presentations

