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Statistics without probability



Defining Expectation Without Probability

We now define expectation (note, we still have not defined probability)

of random quantity X, E| X ], as the value X you would choose if you
must suffer penalty

once you observe X.

Assumption: Coherence. You do not have a preference for a given
penalty if you have the option for one that is certainly smaller.
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X is our quantity of interest, and D is the quantity that we observe
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B requires the specification of E[X], E[D], var[X], var[D], and cov[X, D]



The Belief Structure

» Consider two random quantities X and D

« X is our quantity of interest, and D is the quantity that we observe

» Quantities are defined on the Hilbert space defined by (X, Y) = E[XTY]

» Define the belief structure B = X U D U 1

« 9B requires the specification of E[X], E[D], var[X], var[D], and cov[X, D]

« Expectation is the fundamental unit of belief and & is the analogy of the
joint probability measure In a standard Bayesian analysis.
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Adjusting belief structures

» The adjusted expectation, Ep[ X], is the projection of X onto affine D, hy + HyD

» The adjusted variance, varp| X], is the squared length || X — Ep[ X] H2

varp| X|

) 0 = cos™! (cor[X, D]) o\,j=



“the Bayes linear equations”
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E[X] = h, + H,D
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The orthogonal projection of X onto hy, + HyD solves: Ep[X] = hy + HgD
(X —hy,—HyD,h, + H,D) = E[(X —hy — H,D)"(hy + H,D)] = 0,
so hy = E[X] — H,E[D], Hy = cov[X, D]var[D]~}, and
E,[X] = E[X] + cov[X, D]var[D]"}(E[D] — D).



“the Bayes linear equations”
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The orthogonal projection of X onto hy, + HyD solves: Ep[X] = hy + HgD
(X —hy,—HyD,h, + H,D) = E[(X —hy — H,D)"(hy + H,D)] = 0,
so hy = E[X] — HyE[D], Hy = cov[X, D]var[D]™!, and
E,[X] = E[X] + cov[X, D]var[D]"}(E[D] — D).

The length varp[X] = ||X — Ep[X]||? = (X = E[X], X — Ep[X]), so
varp[X] = var[X] — cov[X, D]var[D] 'cov[D, X]
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Belief space & Probability measure P

+t—
E[X], E|D], var| X], var[D], cov| X, D] p(X), p(D | X)
Adjusted Expectation/Variance Posterior Distribution
+—)
Ep[X], varp[X] E[X | D], p(X | D)



Bayes Linear Probabllistic Bayes

Belief space & Probability measure P

D E—
E| X], E[D], var| X], var|D]|, cov[ X, D] p(X), p(D | X)
Adjusted Expectation/Variance Posterior Distribution
+—)
Epl[X], varp|X] E[X | D], p(X | D)
Probabillity from expectation Expectation from probability
—)

P(E) = E[1,] E[X] = pr(x) dx L
O



Normal without normality?



E,[X] = E[X] + cov[X, D]var[D]"(E[D] — D)

varp[X] = var[X] — cov[X, D]var[D] " 'cov[D, X]



E,[X] = E[X] + cov[X, D]var[D]"(E[D] — D)

varp[X] = var[X] — cov[X, D]var[D] " 'cov[D, X]

Isn’t this just the posterior equations for an
update with normal prior and likelihood?

E[X | D] = E[X] + cov[X, D]var[D | X]"'(E[D | X] — D)

var[X | D] = var[X] — cov[X, D]var[D | X]~!cov[D, X]
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This isn’t the whole story...

Assume In a probabillistic Bayesian analysis that the posterior expectation is
linear in D, E[X | D] =AD + B

Law of iterated expectation: E[X] = E, [Ex[X | D]| = AE[D] + B
And again: E[DXT] = Ej, [DEx[X | D]| = Ep, |D(AD + B)T|
= var[D]AT + E[D]E[X]"
Definition of covariance: E[DX'| = cov[X, D] + E[D]E[X]!
A = cov[X,D]var[D]~', B =E[X] - AE[D]

(proof extended from the results of Hartigan, 1969)
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This isn’t the whole story...

Substitute A and Binto E[X | D] =AD + B
E[X | D] = E[X] + cov[X, D]var[D]~(E[D] — D)
Now substitute this into var[X | D] = E [(X — E[X | DD(X — E[X ] D])T]

var[X | D] = var[X] — cov[X, D]var[D] 'cov[D, X]

We can recover the Bayes linear equations only with the

assumption that the posterior expectation is linear in D
L

O=d
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And when does this happen?

The exponential family of distributions with conjugate prior (Diaconis et al.,
1979)

 Normal likelihood, Normal prior (real-valued)

* Poisson likelihood, Gamma prior (counts)
 Bernoulli likelihood, Beta prior (probabilities)
 Gamma likelihood, Gamma prior (strictly positive)
* Any exponential family, general conjugate prior

And some mixture models (Ericson, 1969)



Hierarchical Bayes Linear
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Adjusting Beliefs of M(/)
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Adjusting Beliefs of M(/)

Following Hodges (1998), note that 0 = M(f) — f. + R.(f?), and so
with some manipulation

R1(Y)
Yy g 0 01 .
| 0 ; N R (Y)
Yo 0 ®,, 3, R1(B)
Okmxl —Ikm mel ®Ik M(ﬂ)



Now let’'s make 1t fast

Define ®; = (CIDZTCIDi)_ICI){Yl as the projection of Y; onto the column
space of D,

R1(Y)
b, L 0 01 f
| 0 | Re)
o, U I 8, R1(5)
0 —Lim Jmx1 @I | | M(B)




Now let’'s make 1t fast

Define ®; = (CIDZTCIDi)_ICID{Yl as the projection of Y; onto the column
space of D,

R1(Y)
b, |2 0 01 f
- | RS 0 : 4 R (Y)
| o - I 3, R1(B)
0 —Lim Jmx1 @I | | M(B) f
R (D)

This is a general solution for all linear hierarchical regression models



Modelling glacier dynamics is hard...

3-D grid box emitted and momentum  incoming
(CO2, dust, H20) reflected radiation (winds) solar radiation
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Source: 2000 W.F. Ruddiman

Global Circulation Models (GCM) Regional Ice Sheet Models
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H Ice Sheet Model
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H Ice Sheet Model

(coupling)

---------------------------------

How do we provide accurate joint
reconstructions of sea-surface
temperature and sea-ice concentration as
boundary conditions?




Model Runs

Mean Model SST by maonth and model
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Mean Model SST by month and maodel
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Joint behaviour of SST and SIC
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Joint behaviour of SST and SIC

sst

We have this at every grid cell in the model



The statistical model

SST SIC
Bi = M(B) + Ri(5)

Tx = M(X) + Ux Ty = (I)TXM(ﬁ) + Uy
/= HT'x + W
The coexchangeable model of The coexchangeable process model of

Rougier et al. (2013) Astfalck et al. (2024)



Reconstructions of SST and SIC

a) SST — February b) SST — August




Generalising Bayes Linear
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Bayes as optimisation

Bissiri et al. (2016) recast probabilistic Bayes as the solution to

q*(0)) = argmin § E_, Z [(0,x)| + KLD(g||x)
g€l =1

The Bayes update is the solution of an optimisation that seeks the posterior

distribution in 11 that minimises the divergence from the data generating
process.

This provides an immediate connection to Bayes linear methods being the
solution of a (different) optimisation problem.

What do we achieve by playing with 117 =



A generalised Bayes inference

Property 1: An underlying geometry &, establishing the space in which
iInference takes place

Property 2: A notion of closeness between objects in & to relate beliefs and
data

Property 3: An optimisation, within solution space C, for the closest belief
representation to the data generating process



Bayes Linear Bayes as Optimisation

The product inner product The &£, inner product
(X,Y) = E[XTY] g (f(0), 8(0)) = {f(ﬁ)g(ﬁ) pu(do)
The belief structure, % Probability measure 1(6)

Property 1: An underlying geometry &, establishing the space in
which inference takes place

L

O=d



Bayes Linear Bayes as Optimisation

The product inner product The &£, inner product
(X,Y) = E[XTY] g (f(0), 8(0)) = {f(ﬁ)g(ﬁ) pu(do)
The belief structure, A Probability measure 1(6)
IX = Y5, +«—>  KLD(F|lf) + KLD(g||7)

Property 2: A notion of closeness between objects in & to relate |
beliefs and data o—k;



Bayes Linear Bayes as Optimisation

The product inner product The &£, inner product
(X,Y) =E[XTY] . : (f(0), 8(0)) = {f (0)g(0) p(do)
The belief structure, % Probability measure 1(6)
IX - YIlg, «—  KLD(¥y|lf) + KLD(g||7)
Affine space of D S
— Posterior distributions 11

E,[X] = h+ HD

Property 3: An optimisation, within solution space C, for the |
closest belief representation to the data generating process o—i:



Real Positive Bounded 0,1
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Inference with constrained solutions

In a probabilistic Bayesian analysis we generally handle this in two ways:

1. Assign zero weight to regions in the prior (or equivalently, add a rejection
step into the MCMZOQ).

2. Transform your data/model.

Bayes linear inference orthogonally projects X into the affine subspace of D

Ep[X] = argmin {(X —h — HD,h + HD) |
h+HD

Constrain the solution to lie in some subset C and call this quantity Eg[X]. Note,
Eg[X] is not necessarily affine in D. =






[Q\|
-2 -
-3 -
R S A S
X4

(X.Y) = E[XTY]



(X, Y)p = (X - ED‘[X], Y — Ep[Y])

1 - °
[X]

X -1
24
—.'3 7
10 1' > 3
X4

(X.Y) = E[XTY]



(X, Y)p = (X - ED‘[X], Y — Ep[Y])

1 - °
[X]

X -1
_2',I'
1 o0 1 2 3
X1
(X,Y) = B[XTY] E3[X] = arg min||Ey[X] — ql| 5

qeC o
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Generalised Adjusted Variance

Adjusted variance is calculated from an outer product assuming affine Ep| X|. If
ES[X] # E4[X], we break the affine assumption.

Define L as a square-root decomposition varp[X] = LLT (I like L = Qﬁ) and
the constraint discrepancy 7z = L_I(Eg[X] — E4[X]).

The generalised adjusted variance is Varg[X] = LLSLT where
1. Thelimit lim {S;} =1

|2, =0
2. Thelimit lim {S;} =0
|Z;| =0
3. S;; = f(z;) is non-increasing in z; =






2 -
0
N
-2 1121
Saw
4 - ®
Eql
2 0 >
X1 Z1

[}
[ ]
I
I
|

varp[X] = LLT, and L = Qy/A



Varg[X] = LSL'

N
-2 7121
SO
4 - _‘
C:d[
2 0 >
Z;

varp[X] = LLT, and L = Qy/A



Varg[X] = LSL'

N C
-2 [2]
S

4 - ®
"5 0 >
Z;
varp| X] _ LLT, andL = QWA Rotaice into Z via L~}
D — ’ —



Unconstrained Emulator

An Afforestation Uptake Model

Monotone Emulator
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One day of COVID19 Deaths
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